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The Weather4Cast 2025 Challenge

The competition frames nowcasting as a multi-modal super-resolution task:

Inputs (Satellite):

11 bands (VIS, IR, WV).

Coarse resolution (≈ 6× 6 pixels).

4 context frames (past hour).

Targets (Radar):

Ground-truth rain rate.

High resolution (2km, 32× 32 pixels).

Task: Predict cumulative rainfall over
4 hours.

The Core Difficulty

Bridging the super-resolution gap while handling spatial distribution shifts across
different European regions.
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Problem Statement

Current limitations in Deep Learning Nowcasting:

1 Compute Costs: End-to-end training of large ViTs is prohibitive.

2 Data Hunger: Training large backbones requires massive datasets to generalize.

3 Calibration: Models often minimize RMSE but fail to capture tails (extreme
events).

Our Hypothesis: A frozen, pre-trained ”World Model” (Satellite Encoder) can be
reused with a lightweight projector to solve these issues efficiently.
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Proposed Architecture: DINO-V-JEPA
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Deep Dive: The Projector

How we map frozen tokens to rainfall distributions:

Modality Gap: A trainable downsampling layer adapts 11-channel satellite inputs
to the RGB-trained DINOv3.

Latent Processing:
Encoder (V-JEPA ViT): Maps DINOv3 tokens (4× 196× 1024) to a unified latent
space.
Decoder (V-JEPA ViT): Compresses dim to 384, performs Time-Expansion
(interpolating 4 input frames to 16 output slots) and input into another ViT for
representation refinement before predictions.

Output Head: 3D Convolution collapses features into K discrete rainfall bins.
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Comparison Baselines: 3D-UNet

To prove the efficacy of the frozen encoder, we trained full spatiotemporal baselines:

3D-UNet Variants

Backbone: Standard 3D-UNet with (2+1)D convolutions.

Head A (Aggregate): Predicts discrete RPS directly (similar to our DINO
approach).

Head B (Per-Pixel): A Gamma-Hurdle model.

Hurdle: Binary classification (Rain / No-Rain) using Focal Loss.
Gamma: Regresses intensity (α, β) for rainy pixels.
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Training Objective: Discrete CRPS

We optimize the Rank Probability Score (RPS) to align directly with the
competition metric.

LRPS =
1

N

N∑
i=1

K∑
k=1

(Fk(Pϕ(yi |zi ))− 1(k ≥ yi ))
2 (1)

Pϕ: Predicted categorical distribution over K bins.

Fk : Empirical Cumulative Distribution Function (eCDF).

1: Indicator function (1 if bin k exceeds truth yi ).

Note: This bypasses assumptions about parametric distributions (e.g., Gaussian/Gamma).
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Dataset Characteristics

Table: Summary Statistics of the Validation Data Split

Statistic Mean Min p50 p95 Max

Masking (%) 0.0000 0.0000 0.0000 0.0000 0.0000
Zero-Inflation (%) 88.8463 0.0916 99.8718 100.0000 100.0000
Aggregate Target (mm) 0.3434 0.0000 0.0012 2.4084 4.1663

Non-Zero Mean (mm) 0.3073 0.0000 0.2354 0.9859 1.6961
Non-Zero Max (mm) 1.7536 0.0000 0.2950 7.9700 10.5800
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Dataset Characteristics

Data: 2 years of data, OPERA radar ground truth.

The Zero-Inflation Challenge

Sparsity: 88% of validation samples have zero rain.

Pixel Sparsity: Median sample has > 99.9% zero-valued pixels.

Implication: Models can achieve low error by predicting ”zero” everywhere, but
fail the CRPS metric which penalizes uncalibrated uncertainty.
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Data Pipeline: Super-Resolution

Challenge: Radar targets are 6× higher resolution than satellite inputs.

Synchronized Cropping: We implement BaseSuperResCrop to calculate
Low-Res (Satellite) coordinates based on High-Res (Radar) crop targets.

Mask Handling: Geometric augmentations (H/V Flips) are synchronized across
the entire stack:

Input (11-channel Satellite)
Target (Rain Rate)
Metadata Mask (Valid/Invalid pixels)
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Addressing Sparsity: Rain-Biased Sampling

The Sparsity Problem

Random cropping leads to empty targets and zero-inflation.

Solution: RandomSuperResCrop

Logic: With probability prain, the sampler scans for pixels > 0.1 mm/hr.

Action: Forces the crop to center on these ”active” weather events.

Result: drastically up-samples convective events during training while preserving
valid spatial context.
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Main Results: Leaderboard

Backbone Loss Objective Bin Max (mm/hr) Bins (K) CRPS ↓

DINO-VJEPA RPS (Aggregate) 128 25,601 3.5102
UNET3D (v4) Gamma-Hurdle (Per-Pixel) 512 129 4.7637
DINO-VJEPA RPS (Aggregate) 128 129 5.5894
UNET3D (v10) Gamma-Hurdle (Per-Pixel) 64 6,401 6.3634
UNET3D (v10) RPS (Aggregate) 64 6,401 7.0249
UNET3D (v10) RPS + Gamma-Hurdle 64 6,401 7.1057

Table: Test set performance. Our frozen approach outperforms trainable baselines by ≈ 26%.
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Key Finding: Binning Granularity

A surprising finding was the impact of the number of bins (K ) on the DINO-V-JEPA
performance.

Coarse Bins (K = 129)

Rmax = 128 mm/hr.

CRPS stalls at ≈ 5.6.

Issue: Discretization bias masks small,
meaningful changes in accumulation.

Fine Bins (K = 25, 601)

Same Rmax .

CRPS reaches 3.51.

Benefit: Sharpens the learning signal;
the RPS gradient builds on finer
residuals.
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Training Dynamics

Trade-off: Fine-grained bins improve convergence but introduce instability.

Epoch Coarse (K = 129) Fine (K = 25, 601)

1 5.6870 4.9539
3 6.2564 4.5317
5 6.2577 3.6404
6 6.2810 3.5102
7 5.8653 6.6455 (Instability)

Result: Early stopping is mandatory when using fine discretizations.
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Training Configuration (DINO-V-JEPA)

Parameter Value

Epochs 30
Learning Rate 1.0e-5, 5.0e-4 (init, effective)
Weight Decay 0.2, 0.5 (init, end)
Batch Size 4096 (via gradient accumulation)

Rain Sampling Probability 0.75
Rain Sampling Threshold 0.3

DINO-V-JEPA: Training configuration parameters.
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Results Analysis: Baselines

Why did the 3D-UNet underperform?

Gamma-Hurdle Head: Performed decently (CRPS 4.76) by explicitly modeling
zeros, but struggled with the aggregate tail.

Multi-Task Learning: Attempting to combine pixel-level Gamma loss with
aggregate RPS failed.

Reason: Numerical instability. Fitting Gamma parameters to zero-inflated data
caused exploding gradients, and the Gamma CDF is numerically fragile in
PyTorch.
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Discussion: Frozen World Models

Why did the frozen encoder win?

1 Sample Efficiency: The DINOv3 backbone already ”knows” spatial features
(clouds, textures). The projector only needs to learn temporal dynamics.

2 Focus on Calibration: The lightweight head allocates capacity to getting the
distribution (eCDF) right, rather than relearning feature extraction.
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Limitations & Future Work

Limitations:

Instability: Fine-grained binning requires careful monitoring (early stopping).

Single Task: Only tested on 4-hour accumulation, not per-frame video prediction.

Future Directions:

Explore Parameter-Efficient Fine-Tuning (PEFT) (e.g., LoRA) instead of fully
frozen or fully trained.

Investigate better numerical approximations for Multi-Task Probabilistic losses.
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Conclusion

1 Foundation Models Work: Freezing DINOv3 + V-JEPA projector is a
competitive strategy for rainfall nowcasting.

2 Resolution Matters: High-fidelity discretization (K ≈ 25k) is critical for
optimizing CRPS.

3 Simplicity Wins: Direct alignment with the evaluation metric (RPS) beat
complex multi-task regularizers.

Code available at:
https://github.com/acmiyaguchi/weather4cast-2025

https://github.com/FalsoMoralista/Weather-4-Cast
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