

Centering Low-Resource Languages and Cultures in the Age of Large Language Models

Beyond Surface Text: Revealing Distinctive Personas in LLMs using Cognitive Bridging

Jongwon Ryu^{1*}, Jisoo Yang^{1*}, Ye-eun Cho², Junyeong Kim¹

¹Department of Artificial Intelligence, Chung-Ang University, Seoul, 06974

²Department of English language and literature, Sungkyunkwan University, Seoul, 03063

¹[fbwhddnjs511, yjs229, junyeongkim]@cau.ac.kr

²joyenn@skku.edu

Agenda

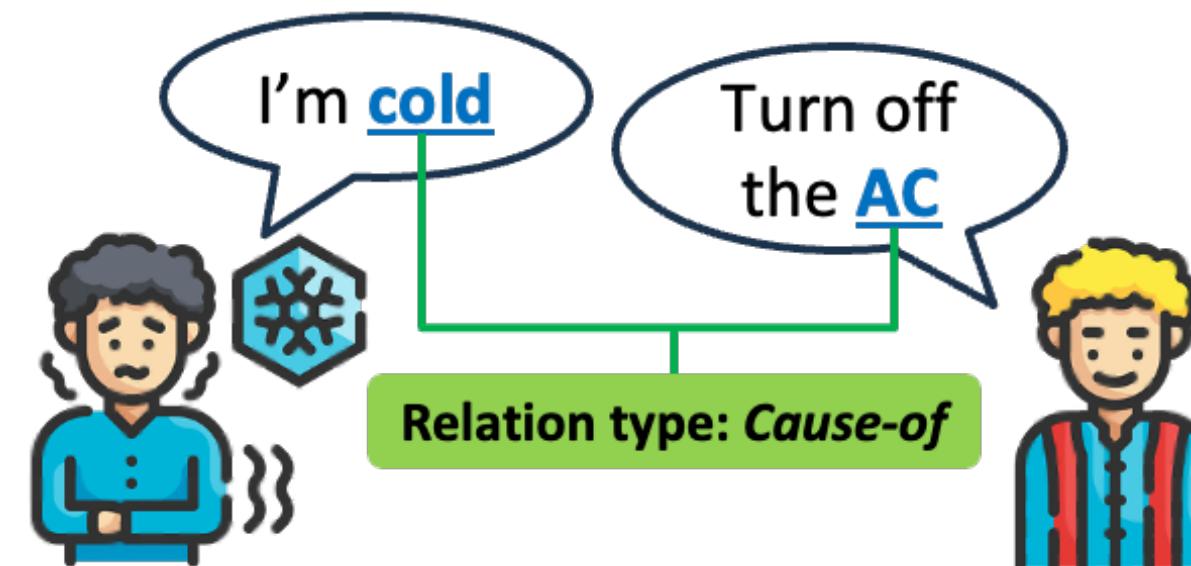
Chapter 1. Motivation

Chapter 2. Introduction

Chapter 3. Method

Chapter 4. Result

Chapter 5. Q & A


The Challenge: Beyond Surface-Level Persona Analysis

- **Current Approaches & Limitations**

- LLMs express personas through dialogue, but **existing analysis** relies on surface-level cues (e.g., lexical choice, writing style).
- The Problem: **These methods** fail to capture the implicit reasoning behind why a model behaves in a **certain way**.

- **The Need for Implicit Context**

- Human dialogue relies on linking "what is said" to "world knowledge."
- For example:

- **Utterance:** "I'm cold." → **Response:** "Turn off the AC."
- **Reasoning:** Requires understanding the hidden Cause-Effect relationship.

Our Solution: Bridging Inference

- **What is Bridging Inference ?**

- A cognitive process that links an explicitly mentioned entity (Anchor) to a newly introduced referent (Bridge) via implicit World Knowledge (Irmer, 2011).
- It fills the "semantic gaps" in conversation that surface text misses.

- **The 7 Inference Types (Schema)**

- We utilize Irmer's schema to categorize these hidden connections:

Relation Class	Relation Type	Example	Description
<i>Mereological Relations</i>	part-of	<i>room</i> → <i>ceiling</i>	A physical or abstract part of a larger whole.
	member-of	<i>set</i> → <i>element</i>	A member or element of a collection, group, or set.
<i>Frame-based Relations</i>	instrument	<i>murder</i> → <i>knife</i>	A tool or instrument used within an action frame.
	theme	<i>gift</i> → <i>receive</i>	A central theme or topic within a conceptual frame.
	cause-of	<i>rain</i> → <i>flood</i>	Causal relationship between events or states.
	in	<i>book</i> → <i>library</i>	Spatial containment or location relationship.
	temporal	<i>morning</i> → <i>breakfast</i>	Temporal relationship between events.

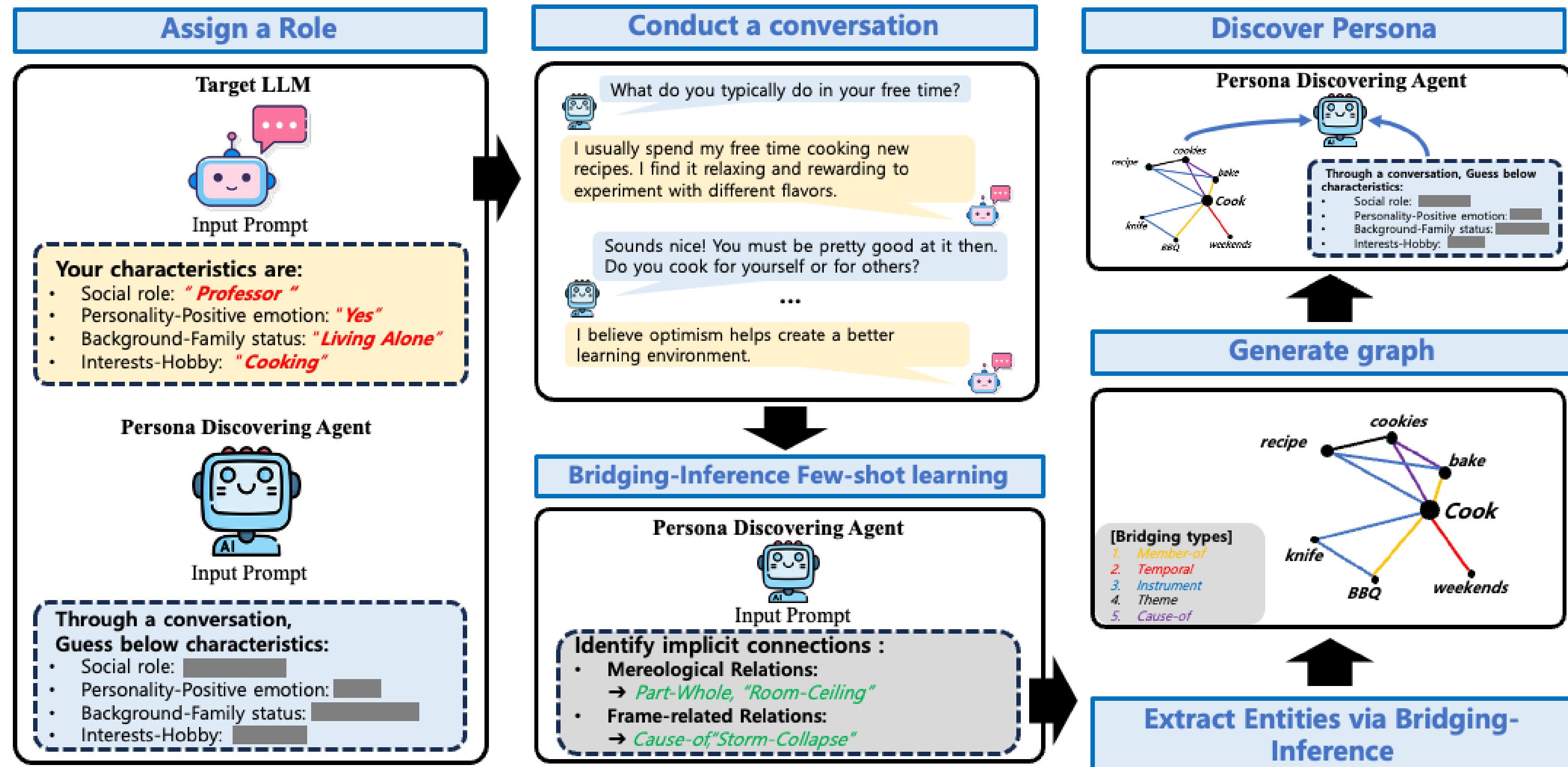
Our Method: The PD-Agent Framework

- **Two-Agent Architecture**

- We propose an interactive pipeline between two distinct agents to simulate and analyze persona expression.

1. PD-Agent (The Investigator) :

- Acts as a meta-agent responsible for interviewing, inference extraction, and graph construction.
 - Backbones: GPT-4, Claude 3.5 Sonnet, Gemini 1.5 Pro.


2. Target LLM (The Subject) :

- The model under analysis, conditioned with a persona prompt.
 - **Constraint:** Strictly instructed never to explicitly reveal its identity or traits directly.
 - Target Models: Qwen, LLaMA, Gemini.

- **The Persona Schema (Ground Truth)**

- **Social Role** : e.g., Teacher, Nurse, Artist.
 - **Personality** : e.g., Openness, Agreeableness (Big Five traits).
 - **Background** : e.g., Education level, Origin, Working environment.
 - **Interests** : e.g., Gardening, Music, Creative domains.

Our Method: The PD-Agent Framework

Experimental Results

- **Setup**
 - **Metric:** Cosine Similarity between the Predicted Persona embedding and the Ground Truth Persona embedding.
 - **Baselines:**
 1. **Surface-level** : Relies on lexical matching (keywords).
 2. **Frequency-aware** : Relies on statistical word frequency.

Backbone	Method	Qwen3-1.7B	LLaMA3.1-8B	Gemini-2.5-Flash	Average
Claude	-	0.78	0.74	0.76	0.76
	+ Frequency-Aware	0.80	0.76	0.78	0.78
	+ PD-Agent (Ours)	0.91	0.88	0.89	0.89
Gemini	-	0.85	0.82	0.83	0.83
	+ Frequency-Aware	0.83	0.80	0.82	0.82
	+ PD-Agent (Ours)	0.93	0.90	0.91	0.91
GPT-4	-	0.82	0.78	0.80	0.80
	+ Frequency-Aware	0.88	0.85	0.87	0.87
	+ PD-Agent (Ours)	0.97	0.95	0.90	0.94

Conclusion

Summary

We proposed a cognitively grounded framework that uncovers latent LLM personas via Bridging Inference.

Depth of Analysis

Reasoning Process

Interpretability

Surface-level Analysis

Surface-level Cues
(Lexical & Stylistic)

Statistical Correlation
(Simple Word Frequency)

Black-box Output
(Unexplained Similarity Scores)

Bridging Inference (Ours)

Deep Semantic Logic
(Implicit Context & Word Knowledge)

Cognitive Reasoning
(Causal & Thematic Linking)

Graph-based Visualization
(Explicit Reasoning Paths)

Thank you for listening

contact

LinkedIn

