

A Simple Linear Patch Revives Layer-Pruned Large Language Models

Xinrui Chen¹, Haoli Bai², Tao Yuan², Ruikang Liu¹, Kang Zhao², Xianzhi Yu², Lu Hou², Tian Guan¹,

Yonghong He¹, Chun Yuan¹

¹Tsinghua University, ²Huawei Technologies

baihaoli@huawei.com ¬, yuanc@sz.tsinghua.edu.cn ¬

Code is available at https: //github.com/chenxinrui-tsinghua/LinearPatch

1. Background

- Layer pruning removes entire Transformer layers without requiring specialized kernels. Most methods suffer from severe performance degradation.
- We find the degradation mainly stems from activation magnitude mismatch across the pruning interface..

3. Method Overview — LinearPatch

Goal: Bridge activation magnitude mismatch at the pruning interface with a **lightweight plug-and-play patch**.

Core Idea: Fuse Hadamard transformation and channel-wise scaling into a single symmetric matrix:

$$X_{new}^{(\ell^*)} = X^{(\ell^*)} H D H^{\top} = X^{(\ell^*)} P$$

where $X^{(\ell^*)}$ is activation of layer ℓ^* , H is the Hadamard matrix, D is the diagonal scaling, and P is the **LinearPatch**.

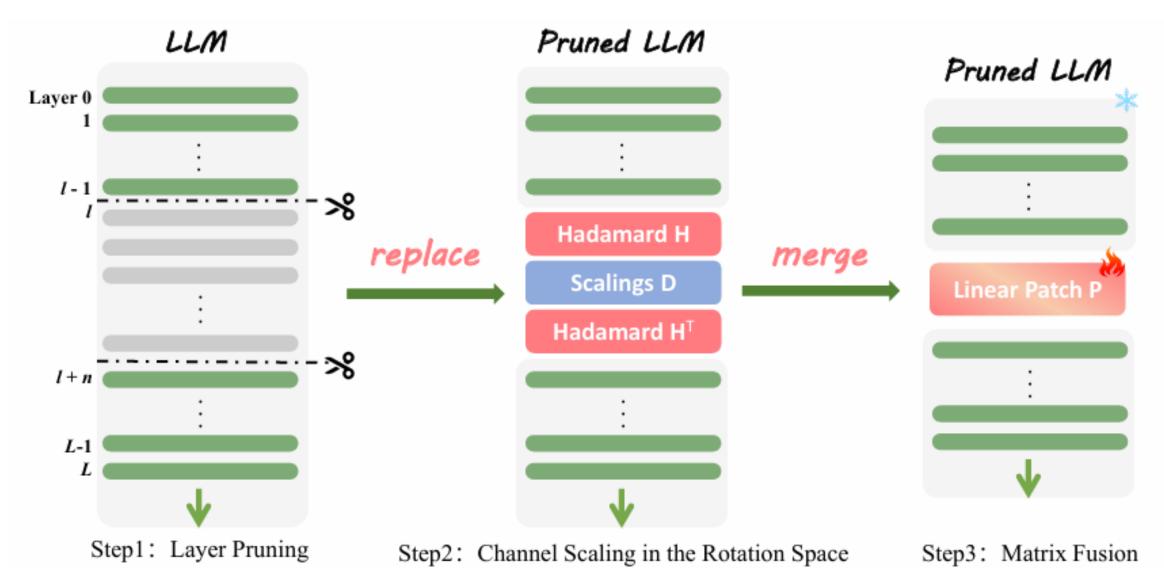


Figure 3: Overview of LINEARPATCH. First, layers are pruned using a specified metric. Next, channel-wise scalings are estimated in the Hadamard-transformed space. Finally, the scalings are fused with Hadamard transformations to form LINEARPATCH, which supports efficient fine-tuning.

2. Motivation

 Observation: The activations before and after the pruned layers exhibit drastically different scales →

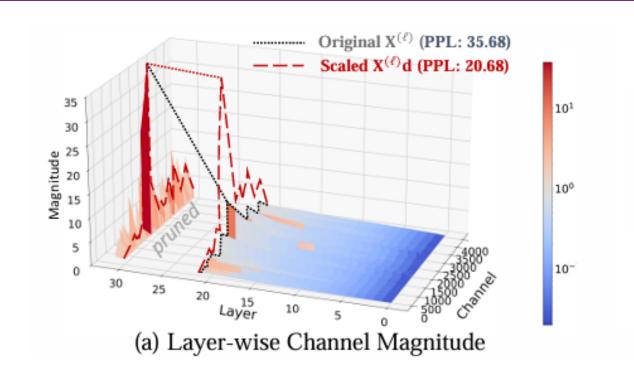
Leads to distributional shift and instability in forward propagation.

Root causes:

- 1 Channel-wise magnitude mismatch between layers.
- 2 Token-wise outlier activations (e.g., BOS, delimiter tokens).

•Key question:

How can we efficiently re-align activation magnitudes without retraining the entire model?



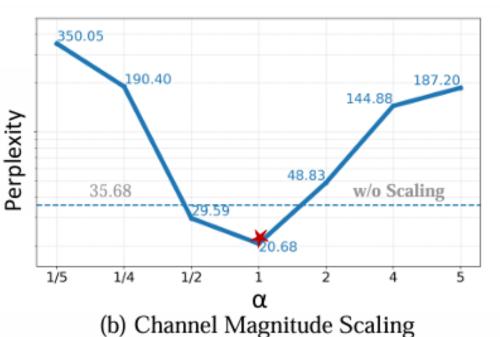


Figure 1: Visualization of layer-wise channel mismatch in pruned LLMs. Removing layers introduces magnitude mismatches, which we address using channel magnitude alignment.

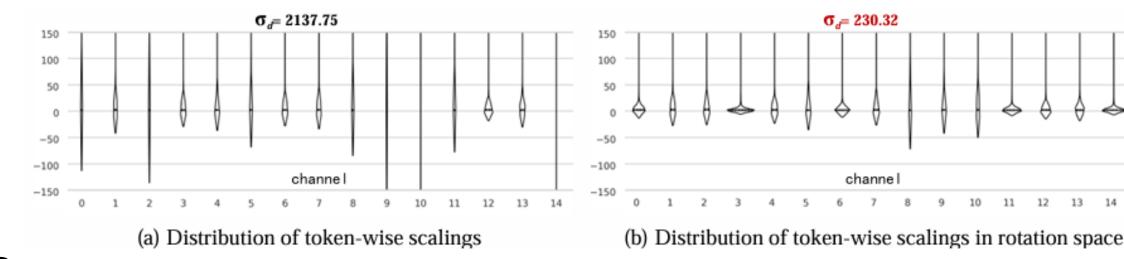


Figure 2: Violin plot of token-wise scaling mismatch in pruned LLMs. The violin width represents the estimated probability density of token-wise scalings. After applying the Hadamard transformation, the scaling distributions become more concentrated, indicating reduced variance across tokens.

4. Experiment

Table 1: Comparison on QA benchmark with training-free methods.

Model	$\mid L_p/L_t$	Method	Ratio	ARC-c	ARC-e	BoolQ	HeSw	PIQA	WG	WSC	Race-h	CoPa	Avg.	RP
	0/32	Dense	-	46.25	74.58	77.74	75.97	79.11	68.98	80.59	39.62	87.00	69.98	100
	9/32	LLMPruner	26.99	31.91	52.90	62.42	54.41	71.33	53.20	65.57	28.52	79.00	55.47	78.14
	9/32	SLEB	27.03	31.91	52.31	46.09	58.28	69.59	58.25	69.23	32.25	79.00	55.21	78.41
В	9/32	ShortGPT	27.03	32.76	48.61	62.17	56.17	64.36	64.33	71.06	32.25	77.00	56.52	80.29
LLaMA-2-7]	9/32	LLM-Streamline (None)	27.03	32.76	48.61	62.17	56.17	64.36	64.33	71.06	32.25	77.00	56.52	80.29
	9/32	$LINEARPATCH_{[S/L]}$	26.78	33.45	55.22	62.14	57.67	67.46	65.11	77.29	34.93	79.00	59.14	84.08
	7/32	LLMPruner	20.56	35.24	60.61	62.42	61.66	75.41	54.78	71.43	31.67	80.00	59.25	83.80
	7/32	SLEB	21.02	33.02	56.57	63.91	62.49	73.07	58.96	69.23	32.06	84.00	59.26	83.66
	7/32	ShortGPT	21.02	36.18	55.89	62.17	62.66	70.40	65.98	77.29	33.78	81.00	60.59	86.06
	7/32	LLM-Streamline (None)	21.02	36.18	55.89	62.17	62.66	70.40	65.98	77.29	33.78	81.00	60.59	86.06
	7/32	$LINEARPATCH_{[S/L]}$	20.78	37.63	61.24	62.14	63.49	70.46	65.90	79.49	36.46	85.00	62.42	88.88

Table 2: Comparison on QA benchmark with LLM-Streamline(FFN).

Model	$ L_p/L_t $	Method	ARC-c	ARC-e	BoolQ	HeSw	PIQA	WG	WSC	Race-h	CoPa	Avg.	RP
LLaMa-2-7B	0/32	Dense	46.25	74.58	77.74	75.97	79.11	68.98	80.59	39.62	87.00	69.98	100
	7/32 7/32 7/32	LLM-Streamline + FT LINEARPATCH _[L] LINEARPATCH _[L] + FT	38.23 37.63 38.23	60.48 61.24 64.35	70.18 62.14 65.32	63.75 63.49 69.33	69.86 70.46 73.23	67.48 65.90 67.40	80.95 79.49 83.88	37.51 36.46 38.37	79.00 85.00 87.00	63.05 62.42 65.23	90.00 88.88 92.83
LLaMA-3-8B	0/32	Dense	53.41	77.78	81.28	79.16	80.85	72.85	86.45	40.19	89.00	73.44	100
	5/32 5/32 5/32	$ \begin{array}{ c c } LLM\text{-Streamlines} + FT \\ LINEARPATCH_{[L]} \\ LINEARPATCH_{[L]} + FT \end{array} $	30.03 48.55 48.12	39.94 70.71 72.77	65.32 74.25 70.98	49.19 72.52 74.63	59.79 76.71 77.42	67.80 73.95 74.03	81.32 81.32 84.62	31.39 38.37 38.56	71.00 86.00 89.00	55.09 69.15 70.01	74.34 94.15 95.16

Table 3: Comparison on PPL benchmark with training-free methods.

Model	Method	WIKI-2	C4	PTB	PPL avg.
	Dense	5.47	6.97	22.51	11.65
	SLEB	9.14	11.21	38.45	19.60
	+LINEARPATCH	8.77	10.66	38.30	19.24
	Taylor+	18.45	20.99	62.18	33.87
LLaMA-2-7B	+LINEARPATCH	13.84	15.28	48.26	25.79
	ShortGPT	18.45	20.99	62.18	33.87
	+LINEARPATCH	13.22	14.58	45.97	24.59
	LLM-Streamline (None)	18.45	20.99	62.18	33.87
	+LINEARPATCH	13.22	14.58	45.97	24.59
	Dense	6.14	8.88	10.59	8.54
	SLEB	13.12	16.76	21.04	16.97
	+LINEARPATCH	11.97	15.74	19.55	15.75
	Taylor+	2287.86	1491.38	4741.90	2840.38
LLaMA-3-8B	+LINEARPATCH	208.88	235.63	264.97	236.49
	ShortGPT	57.76	50.13	67.39	58.43
	+LINEARPATCH	25.67	28.38	31.22	28.42
	LLM-Streamline (None)	2287.73	1491.37	4738.81	2839.30
	+LINEARPATCH	69.82	96.68	88.79	85.10

Table 4: Ablation study on ingredients.

	WIKI-2	C4	PTB	Avg.
Dense	5.47	6.97	22.51	11.65
Vanilla	35.68	36.10	96.52	56.10
$+\mathbf{d}$	20.68	22.75	57.67	33.70
$+\mathbf{P}$	18.60	19.28	53.00	30.29
+ FT	8.60	12.98	37.16	19.58