Neural Tangent Kernel Convergence and Generalization in Neural Networks

Arthur Jacot

arthur.jacot@epfl.ch

Franck Gabriel Clément Hongler clement.hongler@epfl.ch franck.gabriel@epfl.ch Network Function

What happens during training?

One step of Gradient Descent One datapoint x₀

Neural Tangent Kernel:

Describes the effect of gradient descent on the network function

In the Infinite width limit:

 $h_1, \dots, h_{L-1} \longrightarrow \infty$ OS all hidden Layers

- Deterministic - Fixed in time
- Explicit formula

Determines the trajectory of the network function during training

Convergence to a global min. $\leftarrow \rightarrow$

Gradient Descent \longleftrightarrow Kernel Gradient Descent NTK-regularized gradient

> Positive definite NTK proved when $\|X_i\|_{2} = \|X_i\|_{2}$

Least-squares loss \longleftrightarrow Kernel ridge regression MAP for NTK Gaussian prior

What happens inside a very wide network?

- The parameters and activations evolve less and less
- However all layers learn:

- The activations of the hidden neurons become independent