Hierarchical Graph Representation Learning via Differentiable Pooling

Rex Ying, Jiaxuan You, Christopher Morris, William L. Hamilton, Xiang Ren, Jure Leskovec

Stanford University TU Dortmund University University of Southern California

Motivation: ML for Graphs

- Graph classification tasks:
 - Molecule prediction
 - Classify molecule properties (toxicity, drug-likeness etc.)
 - Social networks
 - Predict social group properties
 - Biological applications
 - Model disease pathways in PPI networks
 - Physical systems
 - Evolving dynamical systems

Graph Pooling

Graph Neural Networks (GNNs) have revolutionized machine learning with graphs

But GNNs learn individual node representations and then simply globally aggregate them:

- Mean/max/sum of all node embeddings (e.g. structure2vec)
- Pool by sorting (e.g. DGCNN, PatchySan)

Problem: How to aggregate information in a hierarchical way to capture the entire graph

Pooling for GNNs

Problem: Learn a hierarchical pooling strategy that respects graph structure

Our solution: DIFFPOOL

- Learns hierarchical pooling analogous to CNNs
- Sets of nodes are pooled hierarchically
- Soft assignment of nodes to next-level nodes

DIFFPOOL Architecture

Our approach: Use two sets of GNNs

GNN1 to learn how to pool the network

Learn cluster assignment matrix

GNN2 to learn the node embeddings

DIFFPOOL Architecture

Assuming general GNN model:

 $H^{(k)} = M(A, H^{(k-1)}; \theta^{(k)})$

Concretely: ReLU $(\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}H^{(k-1)}W^{(k-1)})$

Two-tower architecture

Aggregate embedding via assignment to generate next-level representations and adjacency

 $X^{(l)}$ $Z^{(l+1)}$

Experimental Results

An average of 6.27% improvement in accuracy for graph classification tasks on biological and social networks

	Mathad	Data Set					
	Methoa	ENZYMES	D&D	Reddit-Multi-12k	COLLAB	PROTEINS	Gain
GNN	PATCHYSAN	_	76.27	41.32	72.60	75.00	4.17
	GRAPHSAGE	54.25	75.42	42.24	68.25	70.48	_
	ECC	53.50	74.10	41.73	67.79	72.65	0.11
	Set2set	60.15	78.12	43.49	71.75	74.29	3.32
	SORTPOOL	57.12	79.37	41.82	73.76	75.54	3.39
	DIFFPOOL-DET	58.33	75.47	46.18	82.13	75.62	5.42
	DIFFPOOL-NOLP	61.95	79.98	46.65	75.58	76.22	5.95
	DIFFPOOL	62.53	80.64	47.08	75.48	76.25	6.27

Experimental Results

DIFFPOOL learns reasonable pooling architectures

Thank you! Poster: AB #14

Code: https://github.com/RexYing/diffpool