
NeurIPS 2018, Montreal, December 5th

Near Optimal Exploration-Exploitation in Non-Communicating
Markov Decision Processes

Ronan Fruit† Matteo Pirotta∗ Alessandro Lazaric∗

†SequeL – INRIA Lille
∗FAIR – Facebook Paris



NeurIPS 2018, Montreal, December 5th

Exploration–exploitation in RL with Misspecified State Space

Ronan Fruit† Matteo Pirotta∗ Alessandro Lazaric∗

†SequeL – INRIA Lille
∗FAIR – Facebook Paris



TUCRL

Misspecified states: Examples
1 Breakout [Mnih et al., 2015]

Exploration–exploitation in RL with Misspecified State Space - R. Fruit SequeL - 1/5



TUCRL

Misspecified states: Examples
1 Breakout [Mnih et al., 2015]

Intuitive state space: set of plausible configurations of wall, ball and paddle

Exploration–exploitation in RL with Misspecified State Space - R. Fruit SequeL - 1/5



TUCRL

Misspecified states: Examples
1 Breakout [Mnih et al., 2015]

Intuitive state space: set of plausible configurations of wall, ball and paddle

initial state s1

Exploration–exploitation in RL with Misspecified State Space - R. Fruit SequeL - 1/5



TUCRL

Misspecified states: Examples
1 Breakout [Mnih et al., 2015]

Intuitive state space: set of plausible configurations of wall, ball and paddle

initial state s1 Plausible state after some time...

Exploration–exploitation in RL with Misspecified State Space - R. Fruit SequeL - 1/5



TUCRL

Misspecified states: Examples
1 Breakout [Mnih et al., 2015]

Intuitive state space: set of plausible configurations of wall, ball and paddle

initial state s1 Plausible state after some time... Non reachable from s1

Exploration–exploitation in RL with Misspecified State Space - R. Fruit SequeL - 1/5



TUCRL

Misspecified states: Examples
1 Breakout [Mnih et al., 2015]

Intuitive state space: set of plausible configurations of wall, ball and paddle

initial state s1 Plausible state after some time... Non reachable from s1

Cannot be observed!

Exploration–exploitation in RL with Misspecified State Space - R. Fruit SequeL - 1/5



TUCRL

Misspecified states: Examples
1 Breakout [Mnih et al., 2015]

Intuitive state space: set of plausible configurations of wall, ball and paddle

initial state s1 Plausible state after some time... Non reachable from s1

Cannot be observed!

Misspecified state space = ∃ states non-observable from initial state
+ difficult to exclude explicitly from the state space
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Our work

� Regret of existing methods: Õ
(
D S

√
AT
)

Diameter Total number of states

, Misspecified state space ⇐⇒ D = +∞ (infinite diameter)

- TUCRL: first algorithm able to adapt to the reachable part of the MDP

Regret: Õ
(
Dc S c√AT

)
Reachable diameter Number of reachable states
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