

Near Optimal Exploration-Exploitation in Non-Communicating Markov Decision Processes

[†]SequeL – INRIA Lille ^{*}FAIR – Facebook Paris

NeurIPS 2018, Montreal, December 5th

Région Hauterde-Erance

facebook Artificial Intelligence Research

Exploration–exploitation in RL with Misspecified State Space

[†]SequeL – INRIA Lille ^{*}FAIR – Facebook Paris

NeurIPS 2018, Montreal, December 5th

Misspecified states: Examples

1 Breakout [Mnih et al., 2015]

nría

Misspecified states: Examples

1 Breakout [Mnih et al., 2015]

nnía

Misspecified states: Examples

1 Breakout [Mnih et al., 2015]

Misspecified states: Examples

1 Breakout [Mnih et al., 2015]

Plausible state after some time...

Misspecified states: Examples

1 Breakout [Mnih et al., 2015]

Plausible state after some time...

Non reachable from s_1

Misspecified states: Examples

1 Breakout [Mnih et al., 2015] Intuitive state space: set of plausible configurations of wall, ball and paddle

Plausible state after some time...

Misspecified states: Examples

1 Breakout [Mnih et al., 2015] Intuitive state space: set of plausible configurations of wall, ball and paddle

Plausible state after some time...

nría

- All existing methods known to efficiently balance exploration and exploitation in RL with theoretical guarantees rely on the optimism in the face of uncertainty principle
- All such methods fail to learn when the state space is misspecified

Why is exploration more challenging with a misspecified state space?

- All existing methods known to efficiently balance exploration and exploitation in RL with theoretical guarantees rely on the optimism in the face of uncertainty principle
- All such methods <u>fail to learn</u> when the state space is misspecified

$$a_0, r_0 = 0$$

$$s$$

$$a_1, r_1 = \frac{1}{2}$$

Example 1 of Ortner [2008]

Why is exploration more challenging with a misspecified state space?

- All existing methods known to efficiently balance exploration and exploitation in RL with theoretical guarantees rely on the optimism in the face of uncertainty principle
- All such methods <u>fail to learn</u> when the state space is misspecified

Example 1 of Ortner [2008]

- All existing methods known to efficiently balance exploration and exploitation in RL with theoretical guarantees rely on the optimism in the face of uncertainty principle
- All such methods <u>fail to learn</u> when the state space is misspecified

- All existing methods known to efficiently balance exploration and exploitation in RL with theoretical guarantees rely on the optimism in the face of uncertainty principle
- All such methods <u>fail to learn</u> when the state space is misspecified

- All existing methods known to efficiently balance exploration and exploitation in RL with theoretical guarantees rely on the optimism in the face of uncertainty principle
- All such methods <u>fail to learn</u> when the state space is misspecified

- All existing methods known to efficiently balance exploration and exploitation in RL with theoretical guarantees rely on the optimism in the face of uncertainty principle
- All such methods <u>fail to learn</u> when the state space is misspecified

- All existing methods known to efficiently balance exploration and exploitation in RL with theoretical guarantees rely on the optimism in the face of uncertainty principle
- All such methods <u>fail to learn</u> when the state space is misspecified

- All existing methods known to efficiently balance exploration and exploitation in RL with theoretical guarantees rely on the optimism in the face of uncertainty principle
- All such methods <u>fail to learn</u> when the state space is misspecified

- All existing methods known to efficiently balance exploration and exploitation in RL with theoretical guarantees rely on the optimism in the face of uncertainty principle
- All such methods fail to learn when the state space is misspecified

- All existing methods known to efficiently balance exploration and exploitation in RL with theoretical guarantees rely on the optimism in the face of uncertainty principle
- All such methods fail to learn when the state space is misspecified

- All existing methods known to efficiently balance exploration and exploitation in RL with theoretical guarantees rely on the optimism in the face of uncertainty principle
- All such methods <u>fail to learn</u> when the state space is misspecified

Our work

 ${inom{t}{
m O}}\ {\rm TUCRL}:$ first algorithm able to ${\it adapt}$ to the ${\it reachable part}\ {\it of}\ the\ {\sf MDP}$

Come to see our poster # 161 !

TUCRL

Ínría_

Exploration-exploitation in RL with Misspecified State Space - R. Fruit