
Sublinear Time Low-Rank Approximation of
Distance Matrices

Ainesh Bakshi and David P. Woodruff

Carnegie Mellon University

Motivation

• Data and Matrix compression
• De-noising and Dimensionality Reduction
• Applications to Clustering, Topic Modelling, Recommendation
Systems and Distribution Learning.

1

Low-Rank Approximation

Given a n× n matrix A and an integer k, compute

Ak = min
rank(X)≤k

∥A− X∥F

A

n x n

V
U

n x k k x n

2

Distance Matrix

1. Let P = {p1,p2, . . .pn} be a set of n points in Rd

2. Let A be the resulting n× n pair-wise Distance Matrix, i.e.

A =

∥p1 − p1∥ · · ∥p1 − pn∥

· ·
· ·

∥pn − p1∥ ∥pn − pn∥

3. A is a dense matrix and has O(n2) non-zero entries

3

Distance Matrix

1. Let P = {p1,p2, . . .pn} be a set of n points in Rd

2. Let A be the resulting n× n pair-wise Distance Matrix, i.e.

A =

∥p1 − p1∥ · · ∥p1 − pn∥

· ·
· ·

∥pn − p1∥ ∥pn − pn∥

3. A is a dense matrix and has O(n2) non-zero entries

3

Distance Matrix

1. Let P = {p1,p2, . . .pn} be a set of n points in Rd

2. Let A be the resulting n× n pair-wise Distance Matrix, i.e.

A =

∥p1 − p1∥ · · ∥p1 − pn∥

· ·
· ·

∥pn − p1∥ ∥pn − pn∥

3. A is a dense matrix and has O(n2) non-zero entries

3

Singular Value Decomposition

1. Decompose A into UDVT such that U has orthonormal columns,
V has orthonormal rows and D is a diagonal matrix

2. Truncate D to it’s top k entries

3. Optimal!
4. Running time is O(n3)
5. Extremely slow for a large dataset

4

Singular Value Decomposition

1. Decompose A into UDVT such that U has orthonormal columns,
V has orthonormal rows and D is a diagonal matrix

2. Truncate D to it’s top k entries

3. Optimal!
4. Running time is O(n3)
5. Extremely slow for a large dataset

4

Singular Value Decomposition

1. Decompose A into UDVT such that U has orthonormal columns,
V has orthonormal rows and D is a diagonal matrix

2. Truncate D to it’s top k entries

3. Optimal!

4. Running time is O(n3)
5. Extremely slow for a large dataset

4

Singular Value Decomposition

1. Decompose A into UDVT such that U has orthonormal columns,
V has orthonormal rows and D is a diagonal matrix

2. Truncate D to it’s top k entries

3. Optimal!
4. Running time is O(n3)

5. Extremely slow for a large dataset

4

Singular Value Decomposition

1. Decompose A into UDVT such that U has orthonormal columns,
V has orthonormal rows and D is a diagonal matrix

2. Truncate D to it’s top k entries

3. Optimal!
4. Running time is O(n3)
5. Extremely slow for a large dataset

4

Input Sparsity Low Rank Approximation

Clarkson-Woodruff showed how to output a rank k matrix B such that

∥A− B∥2F ≤ (1+ ϵ) min
rank(X)≤k

∥A− X∥2F

1. Running time is O
(
n2 + n poly

(k
ϵ

))

2. Might still be too slow

5

Input Sparsity Low Rank Approximation

Clarkson-Woodruff showed how to output a rank k matrix B such that

∥A− B∥2F ≤ (1+ ϵ) min
rank(X)≤k

∥A− X∥2F

1. Running time is O
(
n2 + n poly

(k
ϵ

))
2. Might still be too slow

5

Can we leverage the structure of
a Distance Matrix to get faster
algorithms?

Sublinear Low Rank Approximation

Theorem : Compute U ∈ Rn×k, V ∈ Rk×n such that

∥A− UV∥2F ≤ min
rank(X)≤k

∥A− X∥2F + ϵ∥A∥2F

in time O
(
n1.001 poly

(k
ϵ

))
1. Does not read most of the input!

2. Only accesses O
(
n1.001 poly

(k
ϵ

))
entries in A

6

Sublinear Low Rank Approximation

Theorem : Compute U ∈ Rn×k, V ∈ Rk×n such that

∥A− UV∥2F ≤ min
rank(X)≤k

∥A− X∥2F + ϵ∥A∥2F

in time O
(
n1.001 poly

(k
ϵ

))
1. Does not read most of the input!
2. Only accesses O

(
n1.001 poly

(k
ϵ

))
entries in A

6

Running Time Comparison

Algorithm Running Time
Singular Value Decomposition O(n3)

Input Sparsity Low-Rank Approximation O
(
n2 + n poly

(k
ϵ

))
Sublinear Low-Rank Approximation O

(
n1.001 poly

(k
ϵ

))

7

Experiments: Running Time

Algorithm Clustering MNIST
Singular Value Decomposition 398.76 398.50

Input Sparsity Low-Rank Approximation 8.94 34.32
Sublinear Low-Rank Approximation 1.69 4.16

8

Experiments: Absolute Error

Synthetic Clustering Dataset MNIST Dataset

Figure 1: We plot ∥A− B∥F on a synthetic dataset with 20 clusters and the
MNIST dataset using ℓ2 as the metric. We compare the error achieved by SVD
(optimal), our Sublinear Algorithm and the Input Sparsity Algorithm.

9

Thank You!

	Can we leverage the structure of a Distance Matrix to get faster algorithms?
	Thank You!

