

Sublinear Time Low-Rank Approximation of Distance Matrices

Ainesh Bakshi and David P. Woodruff

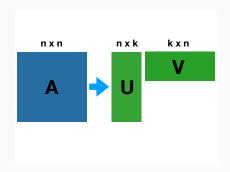
Carnegie Mellon University

- Data and Matrix compression
- De-noising and Dimensionality Reduction
- Applications to Clustering, Topic Modelling, Recommendation Systems and Distribution Learning.

Low-Rank Approximation

Given a $n \times n$ matrix **A** and an integer k, compute

$$\mathbf{A}_{k} = \min_{\mathrm{rank}(\mathbf{X}) \leq k} \|\mathbf{A} - \mathbf{X}\|_{F}$$



1. Let $\mathcal{P} = \{p_1, p_2, \dots p_n\}$ be a set of *n* points in \mathbb{R}^d

- 1. Let $\mathcal{P} = \{p_1, p_2, \dots p_n\}$ be a set of n points in \mathbb{R}^d
- 2. Let **A** be the resulting $n \times n$ pair-wise Distance Matrix, i.e.

$$\mathbf{A} = \begin{bmatrix} \|p_1 - p_1\| & \cdot & \cdot & \|p_1 - p_n\| \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \|p_n - p_1\| & \cdot & \|p_n - p_n\| \end{bmatrix}$$

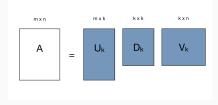
- 1. Let $\mathcal{P} = \{p_1, p_2, \dots p_n\}$ be a set of *n* points in \mathbb{R}^d
- 2. Let **A** be the resulting $n \times n$ pair-wise Distance Matrix, i.e.

$$\mathbf{A} = \begin{bmatrix} \|p_1 - p_1\| & \cdot & \cdot & \|p_1 - p_n\| \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \\ \|p_n - p_1\| & \cdot & \|p_n - p_n\| \end{bmatrix}$$

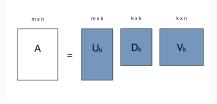
3. A is a dense matrix and has $O(n^2)$ non-zero entries

 Decompose A into UDV^T such that U has orthonormal columns, V has orthonormal rows and D is a diagonal matrix

- Decompose A into UDV^T such that U has orthonormal columns, V has orthonormal rows and D is a diagonal matrix
- 2. Truncate D to it's top k entries

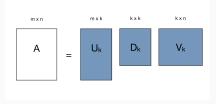


- Decompose A into UDV^T such that U has orthonormal columns, V has orthonormal rows and D is a diagonal matrix
- 2. Truncate D to it's top k entries



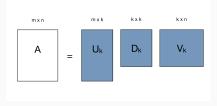
3. Optimal!

- Decompose A into UDV^T such that U has orthonormal columns, V has orthonormal rows and D is a diagonal matrix
- 2. Truncate D to it's top k entries



- 3. Optimal!
- 4. Running time is $O(n^3)$

- Decompose A into UDV^T such that U has orthonormal columns, V has orthonormal rows and D is a diagonal matrix
- 2. Truncate D to it's top k entries



- 3. Optimal!
- 4. Running time is $O(n^3)$
- 5. Extremely slow for a large dataset

Clarkson-Woodruff showed how to output a rank k matrix **B** such that

$$\|\mathbf{A} - \mathbf{B}\|_F^2 \le (1 + \epsilon) \min_{\operatorname{rank}(\mathbf{X}) \le k} \|\mathbf{A} - \mathbf{X}\|_F^2$$

1. Running time is $O\left(n^2 + n \operatorname{poly}\left(\frac{k}{\epsilon}\right)\right)$

Clarkson-Woodruff showed how to output a rank k matrix **B** such that

$$\|\mathbf{A} - \mathbf{B}\|_F^2 \le (1 + \epsilon) \min_{\operatorname{rank}(\mathbf{X}) \le k} \|\mathbf{A} - \mathbf{X}\|_F^2$$

- 1. Running time is $O\left(n^2 + n \operatorname{poly}\left(\frac{k}{\epsilon}\right)\right)$
- 2. Might still be too slow

Can we leverage the structure of a Distance Matrix to get faster algorithms? **Theorem :** Compute $\mathbf{U} \in \mathbb{R}^{n \times k}$, $\mathbf{V} \in \mathbb{R}^{k \times n}$ such that

$$\|\mathbf{A} - \mathbf{U}\mathbf{V}\|_F^2 \le \min_{\operatorname{rank}(\mathbf{X}) \le k} \|\mathbf{A} - \mathbf{X}\|_F^2 + \epsilon \|\mathbf{A}\|_F^2$$

in time $O\left(n^{1.001} \operatorname{poly}\left(\frac{k}{\epsilon}\right)\right)$

1. Does not read most of the input!

Theorem : Compute $\mathbf{U} \in \mathbb{R}^{n \times k}$, $\mathbf{V} \in \mathbb{R}^{k \times n}$ such that

$$\|\mathbf{A} - \mathbf{U}\mathbf{V}\|_F^2 \le \min_{\operatorname{rank}(\mathbf{X}) \le k} \|\mathbf{A} - \mathbf{X}\|_F^2 + \epsilon \|\mathbf{A}\|_F^2$$

in time $O\left(n^{1.001} \operatorname{poly}\left(\frac{k}{\epsilon}\right)\right)$

- 1. Does not read most of the input!
- 2. Only accesses $O\left(n^{1.001} \operatorname{poly}\left(\frac{k}{\epsilon}\right)\right)$ entries in A

Algorithm	Running Time	
Singular Value Decomposition	O(n ³)	
Input Sparsity Low-Rank Approximation	$O\left(n^2 + n \operatorname{poly}\left(\frac{k}{\epsilon}\right)\right)$	
Sublinear Low-Rank Approximation	$O\left(n^{1.001} \operatorname{poly}\left(\frac{k}{\epsilon}\right)\right)$	

Algorithm	Clustering	MNIST
Singular Value Decomposition	398.76	398.50
Input Sparsity Low-Rank Approximation	8.94	34.32
Sublinear Low-Rank Approximation	1.69	4.16

Experiments: Absolute Error

MNIST Dataset

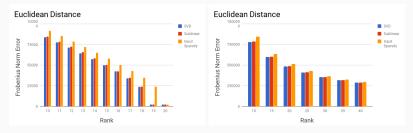


Figure 1: We plot $||\mathbf{A} - \mathbf{B}||_F$ on a synthetic dataset with 20 clusters and the MNIST dataset using ℓ_2 as the metric. We compare the error achieved by SVD (optimal), our Sublinear Algorithm and the Input Sparsity Algorithm.

Thank You!