A loss framework for calibrated anomaly detection

Aditya Krishna Menon Robert C. Williamson

Dec 5th, 2018

Anomaly detection

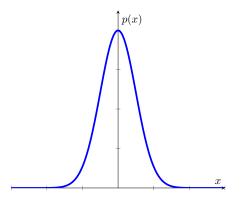
Identify instances that deviate from some systematic pattern

Anomaly detection

Identify instances that deviate from some systematic pattern

A density sublevel view

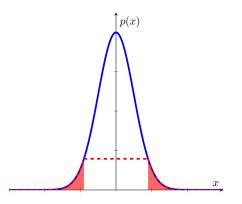
Suppose our data distribution *P* has density $p = \frac{dP}{du}$



A density sublevel view

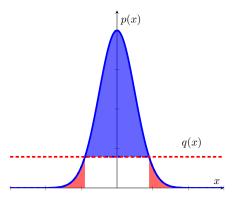
Suppose our data distribution *P* has density $p = \frac{dP}{d\mu}$

Anomalies are instances with low density



A density sublevel view Suppose our data distribution *P* has density $p \doteq \frac{dP}{du}$

Anomalies are instances with low density relative to uniform Q



Classify data against background (Steinwart & Scovel, '05)

Pick density threshold $\alpha > 0$, and classify data *P* vs background *Q*:

$$\min_{f} \mathop{\mathbb{E}}_{P} \ell_{\mathrm{CS}}(+1,f;c) + \mathop{\mathbb{E}}_{Q} \ell_{\mathrm{CS}}(-1,f;c)$$

for cost-sensitive loss $\ell_{\rm CS}$ with cost-ratio $c = \alpha/(1+\alpha)$

Pick density threshold $\alpha > 0$, and classify data *P* vs background *Q*:

$$\min_{f} \mathop{\mathbb{E}}_{P} \ell_{\mathrm{CS}}(+1,f;c) + \mathop{\mathbb{E}}_{Q} \ell_{\mathrm{CS}}(-1,f;c)$$

for cost-sensitive loss $\ell_{\rm CS}$ with cost-ratio $c = \alpha/(1+\alpha)$

Appealing, but with limitations:

Issue

Need sampling for $\mathbb{E}_{Q} f(\mathbf{X}) = \int_{\mathcal{X}} f(x) d\mathbf{Q}(x)$

Pick density threshold $\alpha > 0$, and classify data *P* vs background *Q*:

$$\min_{f} \mathop{\mathbb{E}}_{P} \ell_{\mathrm{CS}}(+1,f;c) + \mathop{\mathbb{E}}_{Q} \ell_{\mathrm{CS}}(-1,f;c)$$

for cost-sensitive loss $\ell_{\rm CS}$ with cost-ratio $c = \alpha/(1+\alpha)$

Appealing, but with limitations:

Issue

Need sampling for $\mathbb{E}_{Q} f(\mathbf{X}) = \int_{\mathcal{X}} f(x) dQ(x)$ Scale of $\alpha \to$ scale of $p(\cdot)$

Pick density threshold $\alpha > 0$, and classify data *P* vs background *Q*:

$$\min_{f} \mathop{\mathbb{E}}_{P} \ell_{\mathrm{CS}}(+1,f;c) + \mathop{\mathbb{E}}_{Q} \ell_{\mathrm{CS}}(-1,f;c)$$

for cost-sensitive loss ℓ_{CS} with cost-ratio $c = \alpha/(1+\alpha)$

Appealing, but with limitations:

Issue

Need sampling for $\mathbb{E}_{Q} f(\mathbf{X}) = \int_{\mathcal{X}} f(x) d\mathbf{Q}(x)$

Scale of $\alpha \rightarrow$ scale of $p(\cdot)$

Doesn't yield confidence scores

Pick density threshold $\alpha > 0$, and classify data *P* vs background *Q*:

$$\min_{f} \mathop{\mathbb{E}}_{P} \ell_{\mathrm{CS}}(+1,f;c) + \mathop{\mathbb{E}}_{Q} \ell_{\mathrm{CS}}(-1,f;c)$$

for cost-sensitive loss $\ell_{\rm CS}$ with cost-ratio $c = \alpha/(1+\alpha)$

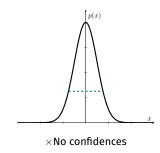
Appealing, but with limitations:

Issue	Resolution
Need sampling for $\mathbb{E}_{Q} f(X) = \int_{\mathcal{X}} f(x) dQ(x)$	A kernel trick
Scale of $\alpha \rightarrow \text{scale of } p(\cdot)$	Pinball loss
Doesn't yield confidence scores	Capped proper loss

Capped proper losses Intuitively, confidence scores are $\propto p(\cdot)^{-1}$

To obtain a single sublevel set of $p(\cdot)$, use

$$\min_{f} \mathop{\mathbb{E}}_{P} \ell(+1,f) + \mathop{\mathbb{E}}_{Q} \ell(-1,f)$$
$$\ell(y,f) = \ell_{\mathrm{CS}}(y,f;c)$$

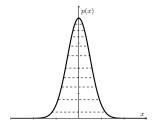


Capped proper losses Intuitively, confidence scores are $\propto p(\cdot)^{-1}$

To obtain all sublevel sets of $p(\cdot)$, use

$$\min_{f} \mathop{\mathbb{E}}_{P} \ell(+1,f) + \mathop{\mathbb{E}}_{Q} \ell(-1,f)$$
$$\ell(y,f) = \int_{0}^{1} w(c) \cdot \ell_{\mathrm{CS}}(y,f;c) \,\mathrm{d}c$$

for positive weight function w; yields proper losses



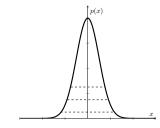
 \checkmark Confidences for **all** instances

Capped proper losses Intuitively, confidence scores are $\propto p(\cdot)^{-1}$

To obtain **tail** sublevel sets of $p(\cdot)$, use

$$\min_{f} \mathop{\mathbb{E}}_{P} \ell(+1,f) + \mathop{\mathbb{E}}_{Q} \ell(-1,f)$$
$$\ell(y,f) = \int_{0}^{1} \left[c \le c_{0} \right] \cdot w(c) \cdot \ell_{\mathrm{CS}}(y,f;c) \, \mathrm{d}c$$

for positive weight function *w*; yields **capped** proper losses



 \checkmark Confidences for anomalous instances

Capped proper losses

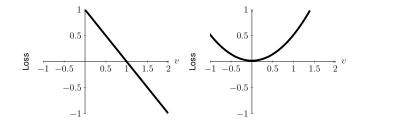
Focussing on the tail sublevel sets results in **capping** the loss

$$\overline{\ell}(+1,f) = \ell(+1,f \wedge \alpha)$$
 $\overline{\ell}(-1,f) = \ell(-1,f \wedge \alpha)$

Capped proper lossesFactFocussing on the tail sublevel sets results in capping the loss $\bar{\ell}(+1,f) = \ell(+1,f \land \alpha)$ $\bar{\ell}(-1,f) = \ell(-1,f \land \alpha)$

An admissible example is

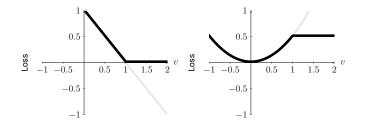
$$\ell(+1,f) = 1 - f$$
 $\ell(-1,f) = \frac{1}{2}f^2$



Capped proper losses Fact Focussing on the tail sublevel sets results in **capping** the loss $\bar{\ell}(+1,f) = \ell(+1,f \land \alpha)$ $\bar{\ell}(-1,f) = \ell(-1,f \land \alpha)$

An admissible example is

$$\bar{\ell}(+1,f) = [\alpha - f]_+$$
 $\bar{\ell}(-1,f) = \frac{1}{2}(f \wedge \alpha)^2$



Quantile control

One can remove cap on $\ell(-1, \cdot)$, yielding e.g.

$$\min_{f} \mathop{\mathbb{E}}_{P} \left[\alpha - f(\mathsf{X}) \right]_{+} + \frac{1}{2} \cdot \mathop{\mathbb{E}}_{Q} f(\mathsf{X})^{2}$$

for fixed density threshold $\alpha > 0$

Quantile control

One can remove cap on $\ell(-1, \cdot)$, yielding e.g.

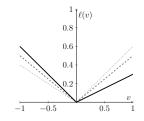
$$\min_{f} \mathop{\mathbb{E}}_{P} \left[\alpha - f(\mathsf{X}) \right]_{+} + \frac{1}{2} \cdot \mathop{\mathbb{E}}_{Q} f(\mathsf{X})^{2}$$

for fixed density threshold $\alpha > 0$

Can learn α : for anomaly fraction $\mathbf{v} \in (0,1)$, find

$$\min_{f,\alpha} \mathbb{E}_{\frac{P}{P}} [\alpha - f(\mathsf{X})]_{+} + \frac{1}{2} \cdot \mathbb{E}_{\frac{Q}{P}} f(\mathsf{X})^{2} - \mathbf{v} \cdot \alpha,$$

- last term arises from pinball loss
- α^* will be the *v*th quantile of $f^*(X)$



The background loss can be written

$$\min_{f,\alpha} \mathbb{E}_{P} \left[\alpha - f(\mathbf{X}) \right]_{+} + \frac{1}{2} \cdot \mathbb{E}_{Q} f(\mathbf{X})^{2} - \mathbf{v} \cdot \boldsymbol{\alpha}$$

The background loss can be written

$$\begin{split} \min_{f,\alpha} & \mathbb{E}_{P} \left[\alpha - f(\mathsf{X}) \right]_{+} + \frac{1}{2} \cdot \mathbb{E}_{Q} f(\mathsf{X})^{2} - \mathbf{v} \cdot \alpha \\ & = \min_{f,\alpha} \mathbb{E}_{P} \left[\alpha - f(\mathsf{X}) \right]_{+} + \frac{1}{2} \cdot \int_{\mathcal{X}} f(x)^{2} \, \mathrm{d}_{Q}(x) - \mathbf{v} \cdot \alpha \end{split}$$

The background loss can be written

$$\begin{split} \min_{f,\alpha} & \mathbb{E} \left[\alpha - f(\mathsf{X}) \right]_{+} + \frac{1}{2} \cdot \mathbb{E} f(\mathsf{X})^{2} - \mathbf{v} \cdot \alpha \\ &= \min_{f,\alpha} \mathbb{E} \left[\alpha - f(\mathsf{X}) \right]_{+} + \frac{1}{2} \cdot \int_{\mathcal{X}} f(x)^{2} \, \mathrm{d} \mathbf{\mathcal{Q}}(x) - \mathbf{v} \cdot \alpha \\ &= \min_{f,\alpha} \mathbb{E} \left[\alpha - f(\mathsf{X}) \right]_{+} + \frac{1}{2} \cdot \|f\|_{L_{2}(\mathbf{\mathcal{Q}})}^{2} - \mathbf{v} \cdot \alpha \end{split}$$

The background loss can be written

$$\min_{f,\alpha} \mathbb{E} [\alpha - f(\mathsf{X})]_{+} + \frac{1}{2} \cdot \mathbb{E} f(\mathsf{X})^{2} - \mathbf{v} \cdot \alpha$$

=
$$\min_{f,\alpha} \mathbb{E} [\alpha - f(\mathsf{X})]_{+} + \frac{1}{2} \cdot \int_{\mathcal{X}} f(x)^{2} d\mathcal{Q}(x) - \mathbf{v} \cdot \alpha$$

=
$$\min_{f,\alpha} \mathbb{E} [\alpha - f(\mathsf{X})]_{+} + \frac{1}{2} \cdot ||f||^{2}_{L_{2}(\mathcal{Q})} - \mathbf{v} \cdot \alpha$$

Suppose we commit to using kernelised *f*:

$$\min_{f \in \mathcal{H}, \alpha \in \mathbb{R}} \mathbb{E} \left[\alpha - f(\mathbf{X}) \right]_{+} + \frac{1}{2} \cdot \|f\|_{L_2(\mathbf{Q})}^2 + \frac{\gamma}{2} \cdot \|f\|_{\mathcal{H}}^2 - \mathbf{v} \cdot \alpha$$

The background loss can be written

$$\min_{f,\alpha} \mathbb{E} [\alpha - f(\mathsf{X})]_{+} + \frac{1}{2} \cdot \mathbb{E} f(\mathsf{X})^{2} - \mathbf{v} \cdot \alpha$$

=
$$\min_{f,\alpha} \mathbb{E} [\alpha - f(\mathsf{X})]_{+} + \frac{1}{2} \cdot \int_{\mathcal{X}} f(x)^{2} d\mathcal{Q}(x) - \mathbf{v} \cdot \alpha$$

=
$$\min_{f,\alpha} \mathbb{E} [\alpha - f(\mathsf{X})]_{+} + \frac{1}{2} \cdot ||f||^{2}_{L_{2}(\mathcal{Q})} - \mathbf{v} \cdot \alpha$$

Suppose we commit to using kernelised *f*:

$$\min_{f \in \mathcal{H}, \alpha \in \mathbb{R}} \mathbb{E} \left[\alpha - f(\mathbf{X}) \right]_{+} + \frac{1}{2} \cdot \|f\|_{L_2(\mathbf{Q})}^2 + \frac{\gamma}{2} \cdot \|f\|_{\mathcal{H}}^2 - \mathbf{v} \cdot \alpha$$

Observed in point processes (McCullagh and Møller, '06) that

$$||f||_{L_2(\mathbf{Q})}^2 + \gamma \cdot ||f||_{\mathcal{H}}^2 = ||f||_{\bar{\mathcal{H}}(\gamma,\mathbf{Q})}^2$$

for some modified RKHS $\bar{\mathcal{H}}(\gamma, Q)$

Drop by poster #**766**!

We propose to minimise, for proper loss ℓ ,

$$\min_{f \in \mathcal{H}, \alpha \in \mathbb{R}} \mathbb{E}_{P} \left[\ell(+1, f(\mathbf{X}) - \ell(+1, \alpha)) \right]_{+} + \frac{1}{2} \cdot \|f\|_{\mathcal{H}(\gamma, \mathbf{Q})}^{2} - \mathbf{v} \cdot \ell(+1, \alpha)$$

This gives a framework for anomaly detection which:

- avoids sampling for background Q
- provides quantile control
- yields calibrated confidence scores

See paper for experiments