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Anomaly detection

Identify instances that deviate from some systematic pattern
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A density sublevel view
Suppose our data distribution P has density p .

= dP
dµ

Anomalies are instances with low density relative to uniform Q

x

p(x)

Classify data against background (Steinwart & Scovel, ’05)
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A classi�cation view
Pick density threshold α > 0, and classify data P vs background Q:

min
f

E
P
`CS(+1, f ;c)+E

Q
`CS(−1, f ;c)

for cost-sensitive loss `CS with cost-ratio c = α/(1+α)

Appealing, but with limitations:

Issue

Resolution

Need sampling for E
Q

f (X) =
∫
X f (x)dQ(x) A kernel trick

Scale of α → scale of p(·) Pinball loss
Doesn’t yield con�dence scores Capped proper loss

Abnormality
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Capped proper losses
Intuitively, con�dence scores are ∝ p(·)−1

To obtain a single sublevel set of p(·), use

min
f

E
P
`(+1, f )+E

Q
`(−1, f )

`(y, f ) =
∫ 1

0
`CS(y, f ;c)

for positive weight function w; these yield proper losses

x

p(x)

×No con�dences
4 / 8
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Capped proper losses
Intuitively, con�dence scores are ∝ p(·)−1

To obtain all sublevel sets of p(·), use

min
f

E
P
`(+1, f )+E

Q
`(−1, f )

`(y, f ) =
∫ 1

0
w(c) · `CS(y, f ;c)dc

for positive weight function w; yields proper losses

x

p(x)

XCon�dences for all instances
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Capped proper losses
Intuitively, con�dence scores are ∝ p(·)−1

To obtain tail sublevel sets of p(·), use

min
f

E
P
`(+1, f )+E

Q
`(−1, f )

`(y, f ) =
∫ 1

0
Jc≤ c0K ·w(c) · `CS(y, f ;c)dc

for positive weight function w; yields capped proper losses

x

p(x)

XCon�dences for anomalous instances
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Capped proper losses

Focussing on the tail sublevel sets results in capping the loss

¯̀(+1, f ) = `(+1, f ∧α) ¯̀(−1, f ) = `(−1, f ∧α)

Fact

An admissible example is
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Quantile control
One can remove cap on `(−1, ·), yielding e.g.

min
f

E
P
[α− f (X)]++

1
2
·E

Q
f (X)2

for �xed density threshold α > 0

Can learn α : for anomaly fraction ν ∈ (0,1), �nd

min
f ,α

E
P
[α− f (X)]++

1
2
·E

Q
f (X)2−ν ·α,

last term arises from pinball loss

α∗ will be the νth quantile of f ∗(X)
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A (di�erent) kernel trick
The background loss can be written

min
f ,α

E
P
[α− f (X)]++

1
2
·E

Q
f (X)2−ν ·α

= min
f ,α

E
P
[α− f (X)]++

1
2
·
∫
X

f (x)2 dQ(x)−ν ·α

= min
f ,α

E
P
[α− f (X)]++

1
2
· ‖f‖2

L2(Q)−ν ·α

Suppose we commit to using kernelised f :

min
f∈H,α∈R

E
P
[α− f (X)]++

1
2
· ‖f‖2

L2(Q)+
γ

2
· ‖f‖2

H−ν ·α

Observed in point processes (McCullagh and Møller, ’06) that

‖f‖2
L2(Q)+ γ · ‖f‖2

H = ‖f‖2
H̄(γ,Q)

for some modi�ed RKHS H̄(γ,Q)
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Drop by poster #766!

We propose to minimise, for proper loss `,

min
f∈H,α∈R

E
P
[`(+1, f (X)− `(+1,α)]++

1
2
· ‖f‖2

H(γ,Q)−ν · `(+1,α)

This gives a framework for anomaly detection which:

avoids sampling for background Q

provides quantile control
yields calibrated con�dence scores

See paper for experiments

8/8


	Obtaining anomaly scores
	Controlling alarm rate
	A (different) kernel trick

