Geometrically Coupled Monte Carlo Sampling

Mark Rowland

Krzysztof Choromanski

François Chalus

Aldo Pacchiano

Tamas Sarlos

Richard E. Turner

Adrian Weller

Geometrically Coupled Monte Carlo Sampling

Central goal: $\mathbb{E}_{X \sim \mu} \left[f(X) \right]$

Unbiased Monte Carlo estimation:

$$\frac{1}{m} \sum_{i=1}^{m} f(X_i), \quad (X_i)_{i=1}^{m} \sim \mu$$

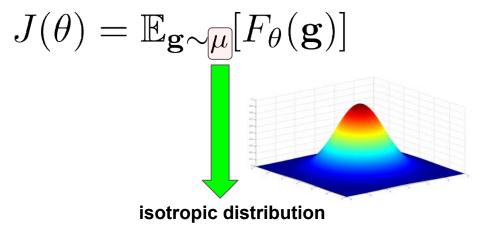
Can we do better than i.i.d.?

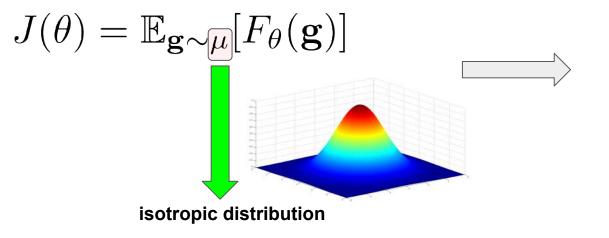
Key contribution: K-optimality. Optimise the objective below over the joint distribution of $X_{1:m}$

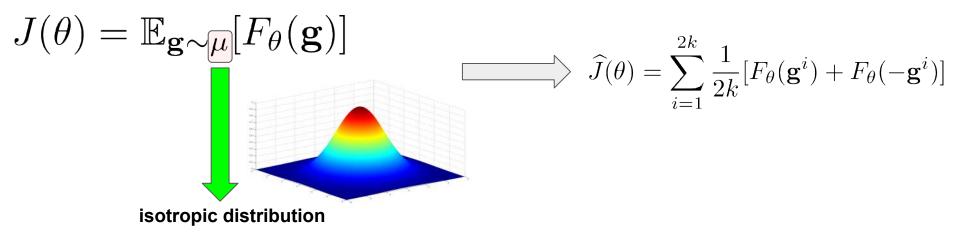
$$\mathbb{E}_{f \sim \mathrm{GP}(0,K)} \left[\mathbb{E}_{X_{1:m}} \left[\left(\frac{1}{m} \sum_{i=1}^{m} f(X_i) - \mathbb{E}_{X \sim \eta} \left[f(X) \right] \right)^2 \right] \right]$$

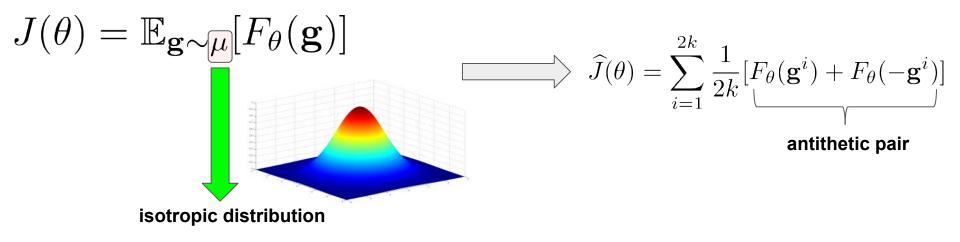
This leads to a multi-marginal transport problem, which is often analytically solvable.

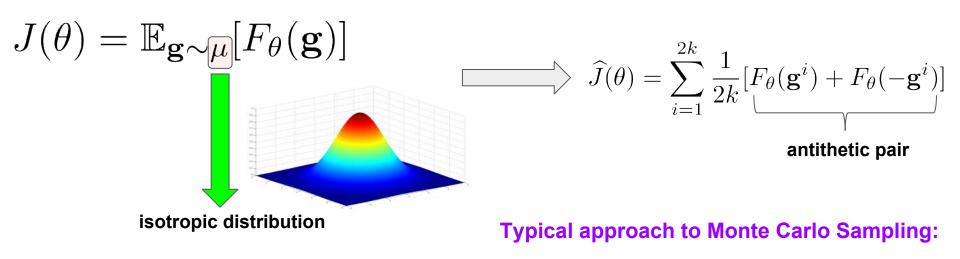
$$J(\theta) = \mathbb{E}_{\mathbf{g} \sim \boldsymbol{\mu}}[F_{\theta}(\mathbf{g})]$$



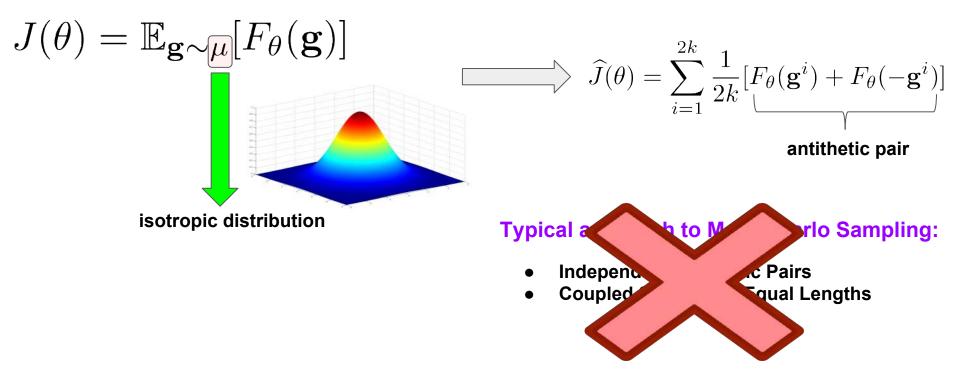


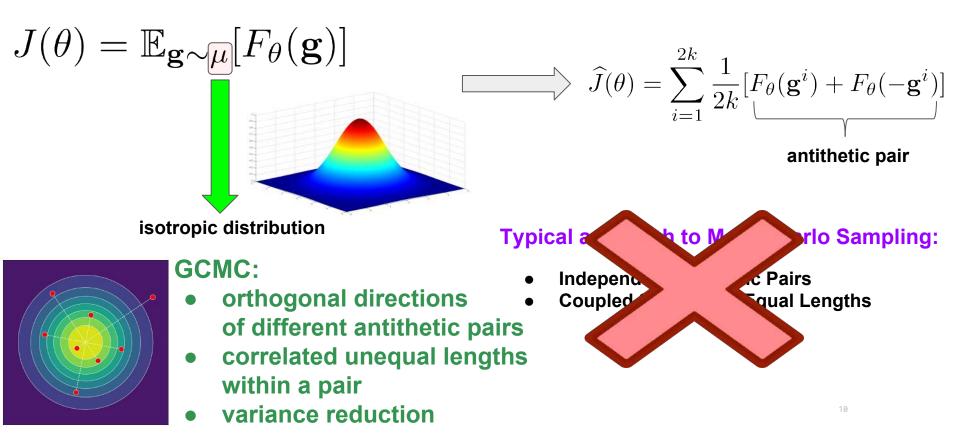




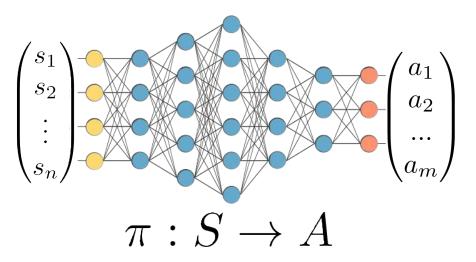


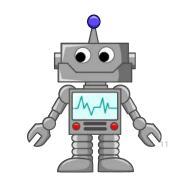
- Independent Antithetic Pairs
- Coupled Samples of Equal Lengths

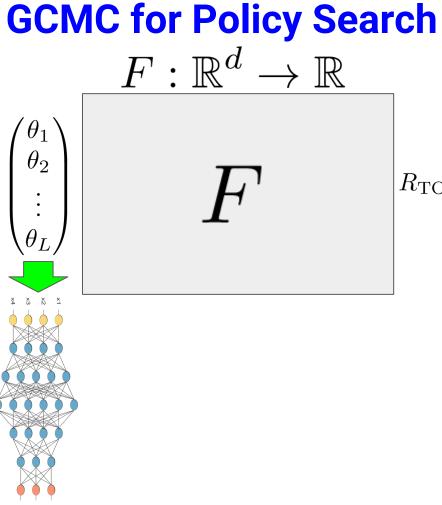


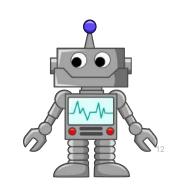


GCMC for Policy Search - Details

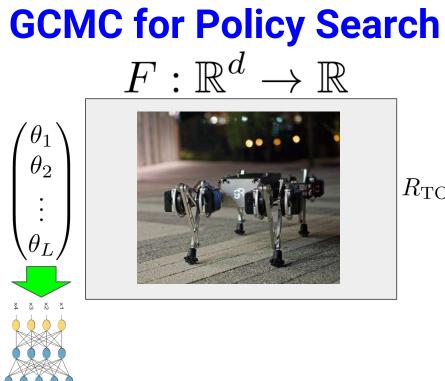




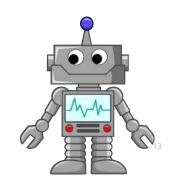


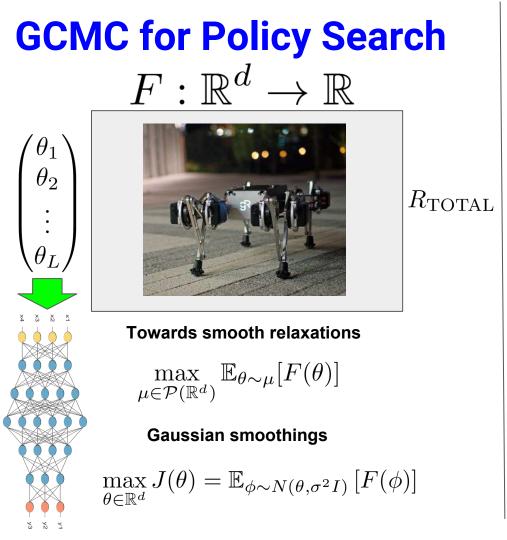


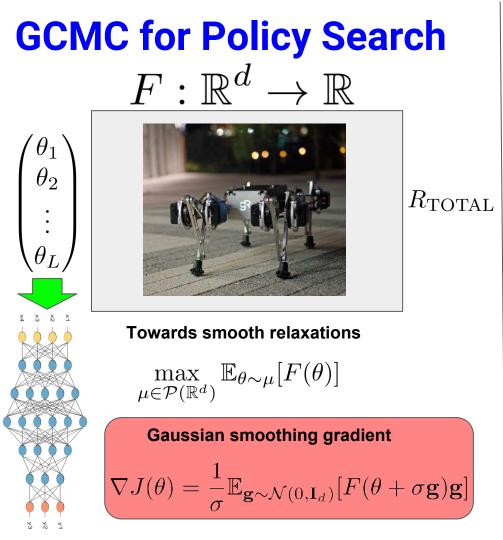
 R_{TOTAL}

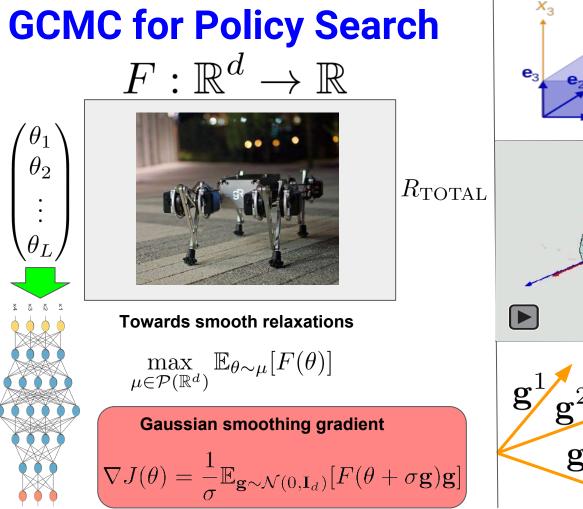


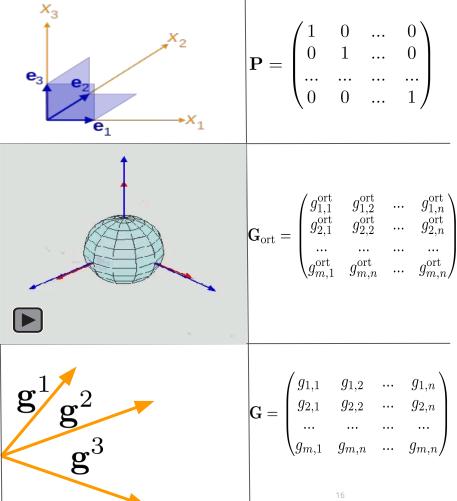
 $R_{\rm TOTAL}$





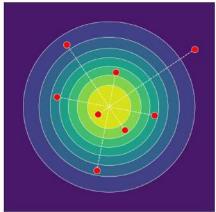






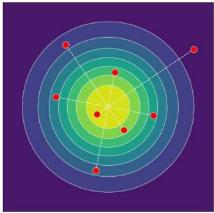
Baseline gradient estimator with antithetic pairs (Salimans et al. 2017):

$$\widehat{\nabla}_N J(\theta) = \frac{1}{2N\sigma} \sum_{i=1}^N (F(\theta + \sigma\epsilon_i)\epsilon_i - F(\theta - \sigma\epsilon_i)\epsilon_i)$$



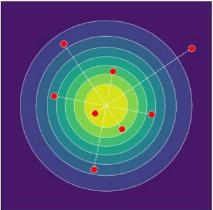
Baseline gradient estimator with antithetic pairs (Salimans et al. 2017):

$$\widehat{\nabla}_N J(\theta) = \frac{1}{2N\sigma} \sum_{i=1}^N (F(\theta + \sigma\epsilon_i)\epsilon_i - F(\theta - \sigma\epsilon_i)\epsilon_i)$$



Baseline gradient estimator with antithetic pairs (Salimans et al. 2017):

$$\widehat{\nabla}_N J(\theta) = \frac{1}{2N\sigma} \sum_{i=1}^N (F(\theta + \sigma\epsilon_i)\epsilon_i - F(\theta - \sigma\epsilon_i)\epsilon_i)$$

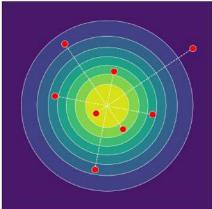


Antithetic inverse lengths coupling estimator (Rowland, Choromanski et al. 2018):

$$\widehat{\nabla}_N J(\theta) = \frac{1}{2N\sigma} \sum_{i=1}^N \left(F(\theta + \sigma \epsilon_i) \epsilon_i - F(\theta - \sigma \epsilon_i) \epsilon_i \right)$$

Baseline gradient estimator with antithetic pairs (Salimans et al. 2017):

$$\widehat{\nabla}_N J(\theta) = \frac{1}{2N\sigma} \sum_{i=1}^N (F(\theta + \sigma\epsilon_i)\epsilon_i - F(\theta - \sigma\epsilon_i)\epsilon_i)$$



Antithetic inverse lengths coupling estimator (Rowland, Choromanski et al. 2018):

$$\widehat{\nabla}_N J(\theta) = \frac{1}{2N\sigma} \sum_{i=1}^N (F(\theta + \sigma \underbrace{\epsilon_i} \underbrace{\epsilon_i} - F(\theta - \sigma \underbrace{\epsilon'_i} \underbrace{\epsilon'_i}) \underbrace{\epsilon'_i}) \underbrace{\mathsf{coupled lengths}}_{\mathsf{coupled lengths}}$$

Baseline gradient estimator with antithetic pairs (Salimans et al. 2017):

$$\widehat{\nabla}_N J(\theta) = \frac{1}{2N\sigma} \sum_{i=1}^N (F(\theta + \sigma\epsilon_i)\epsilon_i - F(\theta - \sigma\epsilon_i)\epsilon_i)$$



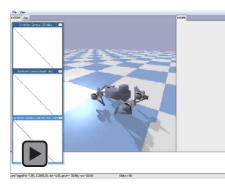
9

Antithetic inverse lengths coupling estimator (Rowland, Choromanski et al. 2018):

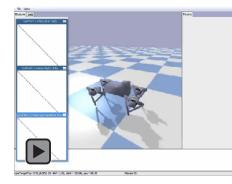
$$\widehat{\nabla}_{N} J(\theta) = \frac{1}{2N\sigma} \sum_{i=1}^{N} (F(\theta + \sigma \epsilon_{i})\epsilon_{i} - F(\theta - \sigma \epsilon'_{i})\epsilon'_{i})$$

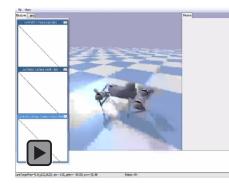
$$\epsilon_{i} \sim \mathcal{N}(0, \mathbf{I}_{d}) \left| \epsilon'_{i} = \epsilon_{i} \frac{F_{\chi(d)}^{-1} (1 - F_{\chi(d)}(\|\epsilon_{i}\|_{2}))}{\|\epsilon_{i}\|_{2}} \right|$$

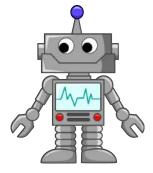
Experimental results: Minitaur Learning How to Walk with antithetic coupled samples + linear policies



N=8



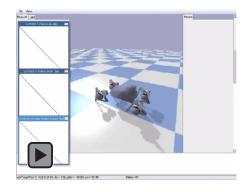




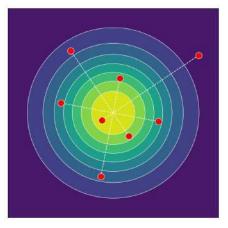


N=64

N=16



N=48



Thank you !!!

