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Nonconvex optimization
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I Consider general optimization program min
x∈C

f (x)

⇒ C ⊆ Rd is a convex compact closed set

I In the nonconvex setting (f is nonconvex)

⇒ Saddle points exist ⇒ First-order optimality condition is not enough

⇒ Check higher order derivatives to escape from saddle points

⇒ Search for a second-order stationary point (SOSP)

I In several cases, all saddle points are escapable and all local minima are global

⇒ Convergence to an SOSP implies convergence to a global minimum!

⇒ Eigenvector problema, phase retrievalb, dictionary learningc , ...

a[Absil et al., ’10] b [Sun et al., ’16] c [Sun et al., ’17]



Unconstrained optimization

I Consider the unconstrained nonconvex setting (C = Rd)

I x∗ is a second-order stationary point if

‖∇f (x∗)‖ = 0︸ ︷︷ ︸
first-order optimality condition

and ∇2f (x∗) � 0︸ ︷︷ ︸
second-order optimality condition

I Various attempts to design algorithms converging to an SOSP

⇒ Perturbing iterates by injecting noisea

⇒ Finding the eigenvector of the smallest eigenvalue of the Hessianb

I Overall comput. cost to find an (ε, γ)-SOSP ⇒ Polynomial in ε−1 and γ−1

I However, not applicable to the convex constrained setting!

⇒ Question: In the constrained case, can we find an SOSP in poly-time?

a[Ge et al., ’15], [Jin et al., ’17a], [Jin et al., ’17b], [Daneshmand et al., ’18]
b[Carmon et al., ’16], [Allen-Zhu, ’17], [Xu & Yang, ’17], [Royer & Wright, ’17], [Agarwal et al.,

’17], [Reddi et al., ’18]
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Unconstrained optimization

I Consider the unconstrained nonconvex setting (C = Rd)

I x∗ is an approximate (ε, γ)-second-order stationary point if

‖∇f (x∗)‖ ≤ ε︸ ︷︷ ︸
first-order optimality condition

and ∇2f (x∗) � −γI︸ ︷︷ ︸
second-order optimality condition

I Various attempts to design algorithms converging to an SOSP

⇒ Perturbing iterates by injecting noisea

⇒ Finding the eigenvector of the smallest eigenvalue of the Hessianb

I Overall comput. cost to find an (ε, γ)-SOSP ⇒ Polynomial in ε−1 and γ−1

I However, not applicable to the convex constrained setting!

⇒ Question: In the constrained case, can we find an SOSP in poly-time?

a[Ge et al., ’15], [Jin et al., ’17a], [Jin et al., ’17b], [Daneshmand et al., ’18]
b[Carmon et al., ’16], [Allen-Zhu, ’17], [Xu & Yang, ’17], [Royer & Wright, ’17], [Agarwal et al.,

’17], [Reddi et al., ’18]
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Constrained optimization: Second-order stationary point

I How should we define an SOSP for the constrained setting?

I Optimality conditions for the constrained setting

⇒ (i) ∇f (x∗)T (x − x∗) ≥ 0 for all x ∈ C

⇒ (ii) (x−x∗)T∇2f (x∗)(x−x∗) ≥ 0 for all x ∈ C s. t. ∇f (x∗)T (x−x∗)=0

I (ii) should hold only on the subspace on which the function could be increasing
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Constrained optimization: Second-order stationary point

I How should we define an SOSP for the constrained setting?

I x∗ ∈ C is an approximate (ε, γ)-second-order order stationary point if

⇒ ∇f (x∗)T (x − x∗) ≥ −ε for all x ∈ C

⇒ (x−x∗)T∇2f (x∗)(x−x∗) ≥ −γ for all x ∈C s. t. ∇f (x∗)T (x−x∗)=0

I (ii) should hold only on the subspace on which the function could be increasing
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Constrained optimization: Second-order stationary point

I How should we define an SOSP for the constrained setting?

I x∗ ∈ C is an approximate (ε, γ)-second-order order stationary point if

⇒ (i) ∇f (x∗)T (x − x∗) ≥ −ε for all x ∈ C

⇒ (ii) (x−x∗)T∇2f (x∗)(x−x∗) ≥ −γ for all x ∈C s. t. ∇f (x∗)T (x−x∗)=0

I (ii) should hold only on the subspace on which the function could be increasing

I Setting ε = γ = 0 gives the necessary conditions for a local min

I We propose a framework that finds an (ε, γ)-SOSP in poly-time

⇒ If optimizing a quadratic loss over C up to a constant factor is tractable

⇒ Using recent advances in solving nonconvex QCQPs
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Main result

Theorem If C is defined by a single quadratic constraint, then our algorithm
finds an (ε, γ)-SOSP after at most O(max{ε−2, d3γ−3}) arithmetic operations
where d is the problem dimension.

Theorem If C is defined as a set of m quadratic constraints (m > 1), and the
objective function Hessian satisfies maxx∈C x

T∇2f (x)x ≤ O(γ), then our
algorithm finds an (ε, γ)-SOSP after at most O(max{ε−2, d3m7γ−3})
arithmetic operations.
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