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Langevin Dynamics 

dX(t) = �rFn(X(t))dt+
p

2��1dB(t),

Langevin Dynamics:

drift term diffusion term

Asymptotic property (Roberts & Tweedie, 1996): converges to a 
stationary distribution

⇡(dx) / exp(��Fn(x))

Implication: The stationary distribution concentrates on the global minima.

๏   : inverse temperature parameter
๏      : standard Brownian motion

�
B(t)



Gradient Langevin Dynamics 

dX(t) = �rFn(X(t))dt+
p

2��1dB(t),

Langevin Dynamics:

Xk+1 = Xk � ⌘rFn(Xk) +
p
2⌘��1 · ✏k,

Gradient Langevin Dynamics (GLD, aka. Langevin Monte Carlo):

๏     is the step size
๏       is a standard Gaussian random vector

⌘
✏k

Goal: bound the Optimization Error

E[Fn(Xk)� Fn(x
⇤)] x⇤ = argmin

x
Fn(x)



Decomposition of Optimization Error 

Goal: bound the Optimization Error E[Fn(Xk)� Fn(x
⇤)]

Ergodicity Model ErrorDiscretization Error

E[Fn(X
⇡)� Fn(x

⇤)]E[Fn(Xk)� Fn(X(k⌘))] E[Fn(X(k⌘))� Fn(X
⇡)]

Decomposition: (Raginsky et al., 2017)

Xk XπX(t) x⇤

Iteration complexity:

k = eO
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Novel Decomposition for Faster Rates

Decomposition (this paper):

Goal: bound the Optimization Error E[Fn(Xk)� Fn(x
⇤)]

Xk

Ergodicity (Discrete)

E[Fn(Xk)� Fn(X
µ)]

Xμ

Distance between 
stationary distributions

E[Fn(X
µ)� Fn(X

⇡)]

Xπ

Model Error

E[Fn(X
⇡)� Fn(x

⇤)]

x⇤
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Global Convergence of Variants of GLD

Stochastic Variance Reduced Gradient Langevin Dynamics (SVRG-LD):

Stochastic Gradient Langevin Dynamics (SGLD): 
Yk+1 = Yk � ⌘rG(Yk) +

p
2⌘��1 · ✏k,

E[rG(X)|X] = rFn(X)๏ unbiased stochastic gradient

Zk+1 = Zk � ⌘ erk +
p

2⌘��1 · ✏k,

erk = rGk(Zk)�rGk( eZ(s)) +rFn( eZ(s))๏ semi-stochastic gradient
๏       is a snapshot of     , updated after every m iterations.eZ(s) Zk
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Problem Setup and Background

I Optimization problem:

min
x

F (x) := 1/n
nX

i=1

fi(x),

Assumptions on the function:
. fi is M -smooth: krfi(x)�rfi(y)k2  Mkx� yk2 8x,y 2 Rd.
. F is (m, b)-dissipative: hrF (x),xi � mkxk22 � b, 8x 2 Rd.
Note that F is nonconvex.

I Langevin Dynamics: stochastic di↵erential equation

dX(t) = �rF (X(t))dt +
p
2��1dB(t),

where the parameters are
. � > 0 is called the inverse temperature parameter.
. B(t) is a standard Brownian motion in Rd.

I Asymptotic property: the distribution of stochastic process X(t)
converges to the following stationary distribution

⇡ / exp(��F (x)).

. ⇡ concentrates on the global minimizer of F .

. Discretize it to obtain optimization algorithm.

Langevin Dynamics Based Algorithms

I Gradient Langevin Dynamics (GLD)

Xk+1 = Xk � ⌘rF (Xk) +
p

2⌘/�✏k

. ✏k: an additive standard Gaussian noise

. ⌘: step size

. Converges fast ,; computation is high when n is large /
I Stochastic Gradient Langevin Dynamics (SGLD)

Yk+1 = Yk � ⌘/B

X

i2Ik

rfi(Yk) +
p

2⌘/�✏k

. rfi(Yk): unbiased stochastic gradient, i.e., E[rfi(x)] = rF (x)

. Ik: a subset of {1, . . . , n} with |Ik| = B

. Reduces the per iteration gradient complexity ,; converges slowly /
I Stochastic Variance Reduced Gradient Langevin Dynamics

(SVRG-LD)

erk = 1/B
X

ik2Ik

�
rfik(Zk)�rfik( eZ(s)) + fW

�

Zk+1 = Zk � ⌘ erk +
p
2⌘/�✏k

. eZ(s) is a snapshot of Zk every L iterations.

. fW = rF ( eZ(s) is the full gradient at eZ(s).

. Multiple-epoch algorithm (each epoch has L iterations).

. Reduces the per iteration gradient complexity , and converges faster
than SGLD ,

Theoretical Results

I GLD: Under smoothness and dissipative assumptions, assume ⌘ . ✏,
GLD achieves E[F (XK)]� E[F (x⇤)]  ✏ +O(d/�).

Iteration complexity: K = O
�
d✏

�1
�
�1 · log(1/✏)

�

. x⇤ = argminF (x) is the global minimizer.

. O(d/�) is the model error of Langevin dynamics.

. XK is called an almost minimizer of F .

. � = O(e�d) is the spectral gap of Markov process Xk.
I SGLD: Under the same conditions, if ⌘ . ✏, B & d

6
/(�✏)4 log4(1/✏),

SGLD achieves E[F (YK)]� E[F (x⇤)]  ✏ +O(d/�
�

Iteration complexity: K = O
�
d✏

�1
�
�1 · log(1/✏)

�

B is the mini-batch size chosen in SGLD.
I SVRG-LD: Under the same conditions, if we choose ⌘ . ✏, SVRG-LD

achieves E[F (ZK)]� E[F (x⇤)]  ✏.

Iteration complexity: K = O
�
Ld
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I Comparison of gradient complexity with state-of-the-art:
Table: Gradient complexities to converge to the almost minimizer.

GLD SGLD SVRG-LD

[Raginsky et al., (2017)] eO
�
n

✏4

�
· e eO(d) eO

�
1
✏8

�
· e eO(d) N/A

This paper eO
�
n

✏

�
· e eO(d) eO

�
1
✏5

�
· e eO(d) eO

⇣p
n

✏5/2

⌘
· e eO(d)

Choose B =
p
n✏

�3/2 and L =
p
n✏

3/2 for SVRG-LD.

Decomposition of Optimization Error

I Goal: bound the optimization error E[F (Xk)]� F (x⇤)
I Decomposition:

E[F (Xk)]� F (x⇤)
= E[F (Xk)� F (Xµ)]| {z }

I1

+E[F (Xµ)� F (X⇡)]| {z }
I2

+E[F (X⇡)]� F (x⇤)| {z }
I3

,

⇤ µ: the stationary distribution of discrete-time process Xk

⇤ ⇡: the stationary distribution of continuous-time process X(t)
I1 Geometric ergodicity of GLD
I2 Distance between two stationary distributions
I3 Gap between Langevin di↵usion and global minimum
I Comparison with existing decomposition approach

X(t)

Xk

x�

Xµ

X�

Figure: Blue arrow: decomposition scheme in [Ragnisky et al., (2017)]; Red arrow:
decomposition scheme in this paper.

⇤ Bypass the discretization error between Xk and X(t).
⇤ Directly analyze the convergence to stationarity of Xk

Proof Road Map

I Lemma 1 (Bounding I1)

Under smoothness and dissipative assumptions, GLD has a unique
invariant measure µ on Rd. It holds that

|E[F (Xk)]� E[F (Xµ)]|  C⇢
�d

2(1 + e
m⌘) exp

✓
� 2mk⌘⇢

d

log()

◆
,

where ⇢ 2 (0, 1), C > 0 are absolute constants, and  = 2M(b� +
m� + d)/b.

. µ is the stationary distribution of discrete-time process Xk

I Lemma 2 (Bounding I2)

Under the same conditions, the invariant measures µ and ⇡ satisfy
��E[F (Xµ)]� E[F (X⇡)]

��  C ⌘/�,

C > 0 is a constant depending on the generator of Langevin di↵usion.

I Lemma 3 (Bounding I3)

Under the same conditions, the error I3 can be bounded by

E[F (X⇡)]� F (x⇤)  d

2�
log

✓
eM(m�/d + 1)

m

◆
.

⇤ Combining Lemmas 1, 2 & 3 yields the results for GLD.

Proof for SGLD & SVRG-LD

I Decomposition of the optimization error of SGLD

E[F (Yk)]� F (x⇤) = E[F (Yk)� F (Xk)] + E[F (Xk)]� F (x⇤)

⇤ Lemma 4 (The distance between SGLD and GLD)

Under smoothness and dissipative assumptions, the outputs of SGLD
(YK) and GLD (XK) satisfy

|E[F (YK)]� E[F (XK)]|  C1

p
��(M

p
� +G)K⌘ 4

s
n� B

B(n� 1)

where C1 is an absolute constant and � = 2(1+1/m)(b+2G2+d/�).

⇤ Combining results for GLD and Lemma 4 yields the results for SGLD.
I Decomposition of the optimization error of SVRG-LD

E[F (Zk)]� F (x⇤) = E[F (Zk)� F (Xk)] + E[F (Xk)]� F (x⇤)

Lemma 5 (The distance between SVRG-LD and GLD)

Under the same conditions, the outputs of SVRG-LD (ZK) and GLD
(XK) satisfy��E[F (ZK)]� E[F (XK)]

��

 C1�K
3/4
⌘

4

s
LM 2(n� B)(3L⌘�(M 2� +G2) + d/2)

B(n� 1)

where C1 is an absolute constant, � = 2(1 + 1/m)(b + 2G2 + d/�)
and L is length of each epoch.

⇤ Combining previous results and Lemma 5 completes the proof.
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