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Why Robust MDPs?

MDPs are powerful tools for modeling sequential decision making problems

Transition probabilities are often uncertain

Estimation errors can have detrimental effects on the resulting policies

Unacceptable in applications involving high level of risk

Need solutions that are robust to this uncertainty
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Problem

Robust MDPs given sample trajectories from a reference policy π̃

Build uncertainty sets Ξ containing the true parameters τ with high probability
Compute the optimal policy under the worst-case parameters in these sets

max
π

min
τ∈Ξ

Eτ,π

[
T−1∑
t=1

R(St ,At ,St+1)

]

This problem is NP-hard in general [Mannor et al., 2012]

Rectangular (independent) constraints [Nilim and El Ghaoui, 2005, Iyengar, 2005] provide
tractability, but are too conservative and do not generalize
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Non-Rectangular Uncertainty Sets via Marginal Features

We consider features φ(s, a, s ′) to model the relationships between states and actions

Feature expectations [Abbeel and Ng, 2004] to model the interaction of a policy π with the
decision process

κφ(π, τ) = Eτ,π

[
T−1∑
t=1

φ(St ,At , St+1)

]

Use feature expectations to define the uncertainty sets:

Ξφπ̃ =
{
τ : κφ(π̃, τ) = κ̂

}
or Ξ̃φπ̃ =

{
τ : ‖κφ(π̃, τ)− κ̂‖ ≤ ε

}
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Marginally-Constrained Robust MDPs

Constrained Optimization Problem

max
π

min
τ∈Ξφ

π̃

Eτ,π

[
T−1∑
t=1

R(St ,At , St+1)

]

Properties

Constrain whole trajectories rather than single states

Can generalize across the state space

Uncertainty sets are policy-conditioned

Tractable optimization

Less conservative empirical performance than rectangular solutions

NeurIPS 2018 Policy-Conditioned Uncertainty Sets for RMDPs December 6th, 2018 4 / 6



Marginally-Constrained Robust MDPs

Constrained Optimization Problem

max
π

min
τ∈Ξφ

π̃

Eτ,π

[
T−1∑
t=1

R(St ,At , St+1)

]

Properties

Constrain whole trajectories rather than single states

Can generalize across the state space

Uncertainty sets are policy-conditioned

Tractable optimization

Less conservative empirical performance than rectangular solutions

NeurIPS 2018 Policy-Conditioned Uncertainty Sets for RMDPs December 6th, 2018 4 / 6



Marginally-Constrained Robust MDPs

Constrained Optimization Problem

max
π

min
τ∈Ξφ

π̃

Eτ,π

[
T−1∑
t=1

R(St ,At , St+1)

]

Properties

Constrain whole trajectories rather than single states

Can generalize across the state space

Uncertainty sets are policy-conditioned

Tractable optimization

Less conservative empirical performance than rectangular solutions

NeurIPS 2018 Policy-Conditioned Uncertainty Sets for RMDPs December 6th, 2018 4 / 6



Marginally-Constrained Robust MDPs

Constrained Optimization Problem

max
π

min
τ∈Ξφ

π̃

Eτ,π

[
T−1∑
t=1

R(St ,At , St+1)

]

Properties

Constrain whole trajectories rather than single states

Can generalize across the state space

Uncertainty sets are policy-conditioned

Tractable optimization

Less conservative empirical performance than rectangular solutions

NeurIPS 2018 Policy-Conditioned Uncertainty Sets for RMDPs December 6th, 2018 4 / 6



Marginally-Constrained Robust MDPs

Constrained Optimization Problem

max
π

min
τ∈Ξφ

π̃

Eτ,π

[
T−1∑
t=1

R(St ,At , St+1)

]

Properties

Constrain whole trajectories rather than single states

Can generalize across the state space

Uncertainty sets are policy-conditioned

Tractable optimization

Less conservative empirical performance than rectangular solutions

NeurIPS 2018 Policy-Conditioned Uncertainty Sets for RMDPs December 6th, 2018 4 / 6



Marginally-Constrained Robust MDPs

Constrained Optimization Problem

max
π

min
τ∈Ξφ

π̃

Eτ,π

[
T−1∑
t=1

R(St ,At , St+1)

]

Properties

Constrain whole trajectories rather than single states

Can generalize across the state space

Uncertainty sets are policy-conditioned

Tractable optimization

Less conservative empirical performance than rectangular solutions

NeurIPS 2018 Policy-Conditioned Uncertainty Sets for RMDPs December 6th, 2018 4 / 6



Please visit us at poster #168
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