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Problem set-up

Goal: find a static state-feedback controller, u = Kx, to minimize 

limT!1
1
T

PT
t=0 E [x0

tQxt + u0
tRut],

Challenge: we don’t know the system parameters 

xt+1 = Axt +But + wt

wt ⇠ N (0,⇧)
ut xt

✓ = {A,B,⇧}

xt+1 = Axt +But + wt

wt ⇠ N (0,⇧),
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u0:T x0:T
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Learning from data

xt+1 = Axt +But + wt

wt ⇠ N (0,⇧)

u0:T x0:T

D := {u0:T , x0:T }

From this data we can form the posterior belief over model parameters:


Instead of optimizing the cost for fixed parameters


cost(K|✓)
We can optimize the expected cost over the posterior


posterior(✓|D)

cost_avg(K) =
R

cost(K|✓)posterior(✓|D)d✓
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Convex upper bounds

co
st

policy, K
K(k) K(k+1)

cost_avg(K)cost_bound(K|K(k+1))

cost_avg(K) ⇡ cost_mc(K) := 1
M

PM
i=1cost(K|✓i) ✓i ⇠ posterior(✓|D)

cost_mc(K)
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Convexification
The crux of the problem is the matrix inequality
2

4
Xi �Q (Ai +BiK)0 K 0

Ai +BiK X�1
i 0

K 0 R�1

3

5 ⌫ 0

known quantities 

decision variables

• Replace the ‘problematic’ term with a Taylor series approx.

• Leads to a new linear matrix inequality with a smaller 
feasible set.

• Hence: convex upper bound.

X�1
i

linear approximation
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The research was conducted at Uppsala University (Sweden) within the
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For complete details on this work we refer to this paper:
Jack Umenberger and Thomas B. Schön. Learning convex bounds for linear quadratic control policy synthesis. In Neural Information

Processing Systems (NeurIPS), Montréal, Canada, December 2018.
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