Learning convex bounds for linear quadratic control policy synthesis

UPPSALA UNIVERSITET

Jack Umenberger Thomas B. Schön

data

(observations of the dynamical system)

NeurIPS 2018

control (stabilize the upright equilibrium position)

learning

data (observations of the dynamical system)

NeurIPS 2018

control (stabilize the upright equilibrium position)

learning

data (observations of the dynamical system)

NeurIPS 2018

control (stabilize the upright equilibrium position)

learning

data (observations of the dynamical system)

NeurIPS 2018

control (stabilize the upright equilibrium position)

learning

data (observations of the dynamical system)

NeurIPS 2018

control (stabilize the upright equilibrium position)

learning

data (observations of the dynamical system)

NeurIPS 2018

control (stabilize the upright equilibrium position)

learning

data (observations of the dynamical system)

NeurIPS 2018

control (stabilize the upright equilibrium position)

learning

data (observations of the dynamical system)

NeurIPS 2018

control (stabilize the upright equilibrium position)

learning

data (observations of the dynamical system)

NeurIPS 2018

control (stabilize the upright equilibrium position)

learning

data (observations of the dynamical system)

NeurIPS 2018

control (stabilize the upright equilibrium position)

learning

data (observations of the dynamical system)

NeurIPS 2018

control (stabilize the upright equilibrium position)

learning

data (observations of the dynamical system)

NeurIPS 2018

control (stabilize the upright equilibrium position)

learning

Problem set-up

NeurIPS 2018

Problem set-up

Goal: find a static state-feedback controller, u = Kx, to minimize

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} \mathbb{E} \left[x_t' Q x_t + u_t' R u_t \right],$$

NeurIPS 2018

$$x_t + Bu_t + w_t$$

$$(0, \Pi)$$

Problem set-up

Goal: find a static state-feedback controller, u = Kx, to minimize

$$\lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} \mathbb{E} \left[x_t' Q x_t + u_t' R u_t \right],$$

NeurIPS 2018

$$x_t + Bu_t + w_t \longrightarrow x_t$$

Challenge: we don't know the system parameters $\theta = \{A, B, \Pi\}$

NeurIPS 2018

 $\mathbf{J} \begin{aligned} \mathbf{x}_{t+1} &= Ax_t + Bu_t + w_t \\ \mathbf{w}_t &\sim \mathcal{N}(0, \Pi) \end{aligned}$

 $\bigwedge \bigcup \underbrace{u_{0:T}}_{w_{t+1}} x_{t+1} = Ax_t + Bu_t + w_t$ $w_t \sim \mathcal{N}(0, \Pi)$

NeurIPS 2018

NeurIPS 2018

From this data we can form the **posterior** belief over model parameters: $posterior(\theta | D)$

NeurIPS 2018

From this data we can form the **posterior** belief over model parameters: $posterior(\theta | D)$

Instead of optimizing the cost for fixed parameters

NeurIPS 2018

- $\mathbf{cost}(K|\theta)$

From this data we can form the **posterior** belief over model parameters: $posterior(\theta | D)$

Instead of optimizing the cost for fixed parameters

We can optimize the expected cost over the posterior

NeurIPS 2018

- $\mathbf{cost}(K|\theta)$
- $\operatorname{cost} \operatorname{avg}(K) = \int \operatorname{cost}(K|\theta) \operatorname{posterior}(\theta|\mathcal{D}) d\theta$

Convex upper bounds

NeurIPS 2018

Convex upper bounds

NeurIPS 2018

Convex upper bounds

NeurIPS 2018

NeurIPS 2018

NeurIPS 2018

 $\mathbf{cost} \ \mathbf{avg}(K) \approx \mathbf{cost} \ \mathbf{mc}(K) := \frac{1}{M} \sum_{i=1}^{M} \mathbf{cost}(K|\theta_i) \qquad \theta_i \sim \mathbf{posterior}(\theta|\mathcal{D})$

The crux of the problem is the matrix inequality

NeurIPS 2018

decision variables

The crux of the problem is the matrix inequality

decision variables

• Replace the 'problematic' term with a Taylor series approx. X_i^{-1}

NeurIPS 2018

- Replace the 'problematic' term with a Taylor series approx. X_i^{-1}
- Leads to a new linear matrix inequality with a smaller feasible set.

- Replace the 'problematic' term with a Taylor series approx. X_i^{-1}
- Leads to a new linear matrix inequality with a smaller feasible set.
- Hence: convex upper bound.

Performance

more data for learning

NeurIPS 2018

Poster presentation

Poster #166 Today 05:00 -- 07:00 PM @ Room 210 & 230

UPPSALA UNIVERSITET

NeurIPS 2018

SWEDISH FOUNDATION for STRATEGIC RESEARCH

