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How do we 
decide these 
are “close”?
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Boolean 
vectors

Denote the feature 
dimension by 𝑛𝑛



Storing a corpus of 𝑀𝑀 items 
requires Ω 𝑛𝑛𝑀𝑀 memory
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𝑘𝑘-Nearest Neighbours

Corpus
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How do we find the 
𝒌𝒌 closest movies?

𝑘𝑘-Nearest Neighbours

New Movie



Dimensionality Reduction

 Given 𝜀𝜀, 𝛿𝛿 ∈ (0,1) find
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Error Probability

Approximation 
Ratio



Dimensionality Reduction

 Given 𝜀𝜀, 𝛿𝛿 ∈ (0,1) find random 
𝑓𝑓:ℝ𝑛𝑛 → ℝ𝑚𝑚 such that for every 𝑥𝑥,𝑦𝑦 ∈ ℝ𝑛𝑛
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𝑚𝑚 = 𝑂𝑂
lg 1/𝛿𝛿
𝜀𝜀2

Johnson Lindenstrauss Lemma [JL’84]

 Given 𝜀𝜀, 𝛿𝛿 ∈ (0,1) there exists a random 
linear 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛 such that for every 𝑥𝑥
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In most proofs matrix is as 
dense as possible. 
Embedding takes 𝑂𝑂(𝑚𝑚𝑛𝑛)
operations.
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Pr 𝐴𝐴 𝑥𝑥 2
2 ∈ (1 ± 𝜀𝜀) 𝑥𝑥 2

2 ≥ 1 − 𝛿𝛿

In most proofs matrix is as 
dense as possible. 
Embedding takes 𝑂𝑂(𝑚𝑚𝑛𝑛)
operations.

If 𝐴𝐴 is sparse, this 
can be made faster.
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Feature Hashing [Weinberger et al.
2009]
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General Idea: Shuffle 
the entries of 𝑥𝑥

+

-

Add random signs

𝑥𝑥
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+

-
𝒎𝒎 = 𝟑𝟑

General Idea: Shuffle 
the entries of 𝑥𝑥Add random signs

1

-

0 −1

𝑥𝑥 Observation: This operation is linear. 

Moreover, every column has exactly one non-zero entry.



The Hashing Trick – With High Prob.
 Observation: If 𝑚𝑚 is large enough, and the 

“mass” of x is not concentrated in few entries, 
then the trick works with high probability.
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To succeed we need 𝑚𝑚 ≥ 1

𝛿𝛿

Success iff no collision occurs



Tight Bounds – Formal Problem
 Fix 𝑚𝑚, 𝜀𝜀, 𝛿𝛿.
 Define 𝜈𝜈(𝑚𝑚, 𝜀𝜀, 𝛿𝛿) to be the maximum 𝜈𝜈 such that 

whenever 𝑥𝑥 ∞ ≤ 𝜈𝜈 𝑥𝑥 2 then feature hashing 
works. 
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Evaluating 𝜈𝜈 has been an 
open question for almost a 

decade.

We have a fixed budget, and 
a fixed room for error.



Tight Bounds – Our Result
 Fix 𝑚𝑚, 𝜀𝜀, 𝛿𝛿.

Fully Understanding the Hashing Trick

Theorem.

1.   If 𝑚𝑚 <
𝑐𝑐 log1𝛿𝛿
𝜀𝜀2

then 𝜈𝜈 = 0 .

Essentially, this means our 
budget is too small to do 

anything meaningful.
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Theorem.

1.   If 𝑚𝑚 <
𝑐𝑐 log1𝛿𝛿
𝜀𝜀2

then 𝜈𝜈 = 0 .

2.   If 𝑚𝑚 ≥ 2
𝛿𝛿𝜀𝜀2

then 𝜈𝜈 = 1 .

Essentially, this means our 
budget is rich enough to do 

anything.
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Theorem.

1.   If 𝑚𝑚 <
𝑐𝑐 log1𝛿𝛿
𝜀𝜀2

then 𝜈𝜈 = 0 .

2.   If 𝑚𝑚 ≥ 2
𝛿𝛿𝜀𝜀2

then 𝜈𝜈 = 1 .

3.   If  
𝐶𝐶 log1𝛿𝛿
𝜀𝜀2

≤ 𝑚𝑚 < 1
𝛿𝛿𝜀𝜀2

then

This is tight, 
which means this is the right

expression.



Empirical Analysis
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𝜈𝜈

𝜀𝜀 min
lg 𝜀𝜀𝑚𝑚

lg 1/𝛿𝛿
lg 1/𝛿𝛿 ,

lg 𝜀𝜀2𝑚𝑚
lg 1/𝛿𝛿

lg 1/𝛿𝛿

0.725

Results show that the Θ-constant 
is close to 1.

This implies that Feature 
Hashing’s performance can be 
very well predicted in practice 

using our formula.
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Tight Cell-Probe Bounds for Succinct Boolean Matrix-Vector 
Multiplication

Come see 
poster Read the paper

Talk offline All of the 
above
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Come see 
poster Read the paper

Talk offline All of the 
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Thank you
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