Optimal convergence rates for distributed optimization

Francis Bach — Inria - Ecole Normale Supérieure, Paris

Joint work with **K. Scaman**, S. Bubeck, Y.-T. Lee and L. Massoulié LCCC Workshop - June 2017

Motivations

Typical Machine Learning setting

Empirical risk minimization:

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^m \ell(x_i, y_i; \theta) + c \|\theta\|_2^2$$

- Large scale learning systems handle massive amounts of data
- Requires multiple machines to train the model

Motivations

Typical Machine Learning setting

Empirical risk minimization: logistic regression

$$\min_{ heta \in \mathbb{R}^d} rac{1}{m} \sum_{i=1}^m \log(1 + \exp(-y_i x_i^ op heta)) + c \| heta\|_2^2$$

- Large scale learning systems handle massive amounts of data
- Requires multiple machines to train the model

Optimization with a single machine

"Best" convergence rate for strongly-convex and smooth functions

Number of iterations to reach a precision $\varepsilon > 0$ (Nesterov, 2004):

$$\Theta\left(\sqrt{\kappa}\ln\left(\frac{1}{\varepsilon}\right)\right)$$

where κ is the condition number of the function to optimize.

- Consequence of $f(\theta_t) f(\theta^*) \leq \beta (1 1/\sqrt{\kappa})^t \|\theta_0 \theta^*\|^2$
- ...but each iteration requires m gradients to compute!

Optimization with a single machine

"Best" convergence rate for strongly-convex and smooth functions

Number of iterations to reach a precision $\varepsilon > 0$ (Nesterov, 2004):

$$\Theta\left(\sqrt{\kappa}\ln\left(\frac{1}{\varepsilon}\right)\right)$$

where κ is the condition number of the function to optimize.

- ► Consequence of $f(\theta_t) f(\theta^*) \leq \beta (1 1/\sqrt{\kappa})^t \|\theta_0 \theta^*\|^2$
 - ...but each iteration requires m gradients to compute!

Upper and lower bounds of complexity

inf sup $\# \text{iterations to reach } \varepsilon$ algorithms functions

Upper-bound: exhibit an algorithm (here Nesterov acceleration)
 Lower-bound: exhibit a hard function where all algorithms fail

Distributing information on a network

Centralized algorithms

- "Master/slave"
- Minimal number of communication steps = Diameter Δ

Decentralized algorithms

- Gossip algorithms (Boyd et.al., 2006; Shah, 2009)
- \blacktriangleright Mixing time of the Markov chain on the graph \approx inverse of the second smallest eigenvalue γ of the Laplacian

Goals of this work

Beyond single machine optimization

- ► Can we improve on $\Theta\left(m\sqrt{\kappa}\ln\left(\frac{1}{\varepsilon}\right)\right)$?
- Is the speed up linear?
- How does a limited bandwidth affects optimization algorithms?

Goals of this work

Beyond single machine optimization

- Can we improve on $\Theta\left(m\sqrt{\kappa}\ln\left(\frac{1}{\varepsilon}\right)\right)$?
- Is the speed up linear?
- How does a limited bandwidth affects optimization algorithms?

Extending optimization theory to distributed architectures

- > Optimal convergence rates of first order distributed methods,
- > Optimal algorithms achieving this rate,
- Beyond flat (totally connected) architectures (Arjevani and Shamir, 2015),
- Explicit dependence on optimization parameters and graph parameters.

Optimization problem

Let f_i be α -strongly convex and β -smooth functions. We consider minimizing the average of the local functions.

$$\min_{ heta \in \mathbb{R}^d} ar{f}(heta) = rac{1}{n} \sum_{i=1}^n f_i(heta)$$

Machine learning: distributed observations

Optimization problem

Let f_i be α -strongly convex and β -smooth functions. We consider minimizing the average of the local functions.

$$\min_{\theta \in \mathbb{R}^d} \bar{f}(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

Machine learning: distributed observations

Optimization procedures

We consider distributed first-order optimization procedures: access to gradients (or gradients of the Fenchel conjugates).

Optimization problem

Let f_i be α -strongly convex and β -smooth functions. We consider minimizing the average of the local functions.

$$\min_{\theta \in \mathbb{R}^d} \bar{f}(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

Machine learning: distributed observations

Optimization procedures

We consider distributed first-order optimization procedures: access to gradients (or gradients of the Fenchel conjugates).

Network communications

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ be a connected simple graph of *n* computing units and diameter Δ , each having access to a function $f_i(\theta)$ over $\theta \in \mathbb{R}^d$.

Strong convexity and smoothness

Strong convexity

A function f is α -strongly convex iff. $\forall x, y \in \mathbb{R}^d$,

$$f(y) \ge f(x) + \nabla f(x)^\top (y - x) + \alpha \|y - x\|^2$$

Smoothness

A function f is β -smooth convex iff. $\forall x, y \in \mathbb{R}^d$,

$$f(y) \leq f(x) + \nabla f(x)^\top (y-x) + \beta \|y-x\|^2.$$

Notations

Communication network

Assumptions

- Each local computation takes a unit of time,
- Each communication between neighbors takes a time τ,
- Actions may be performed in parallel and asynchronously.

Distributed optimization algorithms

Black-box procedures

We consider distributed algorithms verifying the following constraints:

1. Local memory: each node *i* can store past values in an internal memory $\mathcal{M}_{i,t} \subset \mathbb{R}^d$ at time $t \geq 0$.

$$\mathcal{M}_{i,t} \subset \mathcal{M}_{i,t}^{comp} \cup \mathcal{M}_{i,t}^{comm}, \ \theta_{i,t} \in \mathcal{M}_{i,t}.$$

Local computation: each node *i* can, at time *t*, compute the gradient of its local function ∇*f_i*(θ) or its Fenchel conjugate ∇*f_i**(θ), where *f**(θ) = sup_x x^Tθ − *f*(x).

$$\mathcal{M}_{i,t}^{comp} = \operatorname{Span}\left(\{\theta, \nabla f_i(\theta), \nabla f_i^*(\theta) : \theta \in \mathcal{M}_{i,t-1}\}\right).$$

3. Local communication: each node *i* can, at time *t*, share a value to all or part of its neighbors.

$$\mathcal{M}_{i,t}^{comm} = \operatorname{Span}\left(\bigcup_{(i,j)\in\mathcal{E}}\mathcal{M}_{j,t-\tau}\right).$$

Francis Bach

Centralized vs. decentralized architectures

Centralized communication

- One master machine is responsible for sending requests and synchronizing computation,
- Slave machines perform computations upon request and send the result to the master.

Centralized vs. decentralized architectures

Centralized communication

- One master machine is responsible for sending requests and synchronizing computation,
- **Slave** machines perform computations upon request and send the result to the master.

Decentralized communication

- All machines perform local computations and share values with their neighbors,
- ▶ Local averaging is performed through **gossip** (Boyd et.al., 2006).
- ▶ Node *i* receives $\sum_{i} W_{ij} x_j = (Wx)_i$, where *W* verifies:
 - 1. W is an $n \times n$ symmetric matrix,
 - 2. W is defined on the edges of the network: $W_{ij} \neq 0$ only if i = j or $(i, j) \in \mathcal{E}$,
 - 3. W is positive semi-definite,
 - 4. The kernel of W is the set of constant vectors: Ker(W) = Span(1), where $1 = (1, ..., 1)^{\top}$.

• Let $\gamma(W) = \lambda_{n-1}(W)/\lambda_1(W)$ be the (normalized) eigengap of W.

Francis Bach

Lower bound on convergence rate

Theorem 1 (SBBLM, 2017)

Let \mathcal{G} be a graph of diameter $\Delta > 0$ and size n > 0, and $\beta_g \ge \alpha_g > 0$. There exist n functions $f_i : \ell_2 \to \mathbb{R}$ such that \overline{f} is α_g -strongly-convex and β_g -smooth, and for any $t \ge 0$ and any black-box procedure one has, for all $i \in \{1, ..., n\}$,

$$\bar{f}(\theta_{i,t}) - \bar{f}(\theta^*) \geq \frac{\alpha_g}{2} \left(1 - \frac{4}{\sqrt{\kappa_g}}\right)^{1 + \frac{t}{1 + \Delta \tau}} \|\theta_{i,0} - \theta^*\|^2$$

Lower bound on convergence rate

Theorem 1 (SBBLM, 2017)

Let \mathcal{G} be a graph of diameter $\Delta > 0$ and size n > 0, and $\beta_g \ge \alpha_g > 0$. There exist n functions $f_i : \ell_2 \to \mathbb{R}$ such that \overline{f} is α_g -strongly-convex and β_g -smooth, and for any $t \ge 0$ and any black-box procedure one has, for all $i \in \{1, ..., n\}$,

$$\bar{f}(\theta_{i,t}) - \bar{f}(\theta^*) \geq \frac{\alpha_g}{2} \left(1 - \frac{4}{\sqrt{\kappa_g}}\right)^{1 + \frac{t}{1 + \Delta \tau}} \|\theta_{i,0} - \theta^*\|^2.$$

Take-home message

For any graph of diameter Δ and any black-box procedure, there exist functions f_i such that the time to reach a precision $\varepsilon > 0$ is lower bounded by

$$\Omega\left(\sqrt{\kappa_{g}} \Big(1 + \Delta \tau \Big) \ln\left(\frac{1}{\varepsilon}\right) \Big)$$

Extends the totally connected result of Arjevani & Shamir (2015)

Francis Bach

Proof warm-up: single machine

- Simplification: ℓ_2 instead of \mathbb{R}^d .
- **Goal**: design a worst-case convex function *f*.
- From Nesterov (2004), Bubeck (2015):

$$f(heta) = rac{lpha(\kappa-1)}{8} ig[heta^ op A heta - 2 heta_1 ig] + rac{lpha}{2} \| heta\|_2^2$$

with A infinite tridiagonal matrix with 2 on the diagonal, and -1 on the upper and lower diagonal.

Proof warm-up: single machine

- Simplification: ℓ_2 instead of \mathbb{R}^d .
- **Goal**: design a worst-case convex function *f*.
- From Nesterov (2004), Bubeck (2015):

$$f(heta) = rac{lpha(\kappa-1)}{8} ig[heta^ op A heta - 2 heta_1 ig] + rac{lpha}{2} \| heta\|_2^2$$

with A infinite tridiagonal matrix with 2 on the diagonal, and -1 on the upper and lower diagonal.

- **Facts 1**: $0 \preccurlyeq A \preccurlyeq 4I$, *f* is α -strongly convex and β -smooth
- ▶ Fact 2: starting from $\theta_0 = 0$, after t gradient steps, θ_t is supported on the first t coordinates $\Rightarrow \|\theta_t \theta^*\|^2 \ge \sum_{i>t} \|\theta_i^*\|^2$
- ► Get lower bound $f(\theta_t) f(\theta^*) \ge \frac{\alpha}{2} \left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{2t} \|\theta_0 \theta_*\|^2$ after some computations

Proof warm-up: single machine

- Simplification: ℓ_2 instead of \mathbb{R}^d .
- **Goal**: design a worst-case convex function *f*.
- From Nesterov (2004), Bubeck (2015):

$$f(heta) = rac{lpha(\kappa-1)}{8} ig[heta^ op A heta - 2 heta_1 ig] + rac{lpha}{2} \| heta\|_2^2$$

with A infinite tridiagonal matrix with 2 on the diagonal, and -1 on the upper and lower diagonal. $\theta^{\top} A \theta = \theta_1^2 + \sum_{i \ge 1} (\theta_i - \theta_{i+1})^2$

- **Facts 1**: $0 \preccurlyeq A \preccurlyeq 4I$, *f* is α -strongly convex and β -smooth
- ▶ Fact 2: starting from $\theta_0 = 0$, after t gradient steps, θ_t is supported on the first t coordinates $\Rightarrow \|\theta_t \theta^*\|^2 \ge \sum_{i>t} \|\theta_i^*\|^2$
- ► Get lower bound $f(\theta_t) f(\theta^*) \ge \frac{\alpha}{2} \left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{2t} \|\theta_0 \theta_*\|^2$ after some computations

Proof sketch (1)

- **Simplification:** ℓ_2 instead of \mathbb{R}^d .
- **Extremal nodes:** i_0 and i_1 at distance Δ .
- Functions to optimize: Splitting the usual Nesterov function

$$f_i(\theta) = \begin{cases} \frac{\alpha}{2} \|\theta\|_2^2 + n\frac{\beta-\alpha}{8}(\theta^\top M_1 \theta - \theta_1) \text{ if } i = i_0\\ \frac{\alpha}{2} \|\theta\|_2^2 + n\frac{\beta-\alpha}{8}\theta^\top M_2 \theta & \text{ if } i = i_1\\ \frac{\alpha}{2} \|\theta\|_2^2 & \text{ otherwise} \end{cases}$$

where $M_1:\ell_2 o \ell_2$ is the infinite block diagonal matrix with $\left(egin{array}{cc} 1 & -1 \ -1 & 1 \end{array}
ight)$

on the diagonal, and
$$M_2 = \begin{pmatrix} 1 & 0 \\ 0 & M_1 \end{pmatrix}$$
.

• Optimal value:
$$\theta_k^* = \left(\frac{\sqrt{\beta} - \sqrt{\alpha}}{\sqrt{\beta} + \sqrt{\alpha}}\right)^k$$
.

Proof sketch (2)

Francis Bach

Proof sketch (3)

- If θ_{i,0} = 0, each local computation can only increase the number of non zero dimensions by one.
- ▶ $\nabla f_{i_0}(\theta_{i_0,t})$ increases **odd** dimensions, $\nabla f_{i_1}(\theta_{i_1,t})$ increases **even** dimensions.
- \blacktriangleright Δ communication steps are required to communicate between i_0 and i_1 .
- θ_{i,t,k} ≠ 0 after at least k computation steps and k∆ communication steps.
 f is α-strongly convex and β-smooth, and

$$ar{f}(heta_{i,t})-ar{f}(heta^*)\geq rac{lpha}{2}\| heta_{i,t}- heta^*\|_2^2\geq rac{lpha}{2}\sum_{k=k_{i,t}+1}^{+\infty} heta_k^{*2},$$

where
$$k_{i,t} = \max\{k \in \mathbb{N} : \exists \theta \in \mathcal{M}_{i,t} \text{ s.t. } \theta_k \neq 0\} \leq \left\lfloor \frac{t + \Delta \tau}{1 + \Delta \tau}
ight
ceil.$$

Master/slave algorithm

Simple master/slave distribution of Nesterov's accelerated gradient descent.

Input: number of iterations T > 0, communication network \mathcal{G} , $\eta = \frac{1}{\beta_{\sigma}}$,

$$\mu = \frac{\sqrt{\kappa_g} - 1}{\sqrt{\kappa_g} + 1}$$
 Output: θ_T

1: Compute a spanning tree ${\mathcal T}$ on ${\mathcal G}$

2:
$$\theta_0 = 0$$
, $y_0 = 0$

3: for
$$t = 0$$
 to $T - 1$ do

- 4: Send θ_t to all nodes through \mathcal{T}
- 5: $\nabla \bar{f}(\theta_t) =$ AGGREGATEGRADIENTS (θ_t)

6:
$$y_{t+1} = \theta_t - \eta \nabla \overline{f}(\theta_t)$$

7:
$$\theta_{t+1} = (1+\mu)y_{t+1} - \mu y_t$$

- 8: end for
- 9: return θ_T

Master/slave algorithm

Simple master/slave distribution of Nesterov's accelerated gradient descent.

Input: number of iterations T > 0, communication network \mathcal{G} , $\eta = \frac{1}{\beta_{\sigma}}$,

$$\mu = \frac{\sqrt{\kappa_g} - 1}{\sqrt{\kappa_g} + 1}$$
 Output: θ_T

1: Compute a spanning tree ${\mathcal T}$ on ${\mathcal G}$

2:
$$\theta_0 = 0$$
, $y_0 = 0$

3: for
$$t = 0$$
 to $T - 1$ do

4: Send θ_t to all nodes through \mathcal{T}

5:
$$\nabla f(\theta_t) =$$

AGGREGATEGRADIENTS(θ

6:
$$y_{t+1} = \theta_t - \eta \nabla \overline{f}(\theta_t)$$

7:
$$\theta_{t+1} = (1+\mu)y_{t+1} - \mu y_t$$

8: end for

9: return θ_T

Master/slave algorithm

Simple master/slave distribution of Nesterov's accelerated gradient descent.

Input: number of iterations T > 0, communication network \mathcal{G} , $\eta = \frac{1}{\beta_{\sigma}}$,

$$\mu = \frac{\sqrt{\kappa_g} - 1}{\sqrt{\kappa_g} + 1}$$
Output: θ_T

1: Compute a spanning tree ${\mathcal T}$ on ${\mathcal G}$

2:
$$\theta_0 = 0$$
, $y_0 = 0$

3: for
$$t = 0$$
 to $T - 1$ do

- 4: Send θ_t to all nodes through \mathcal{T}
- 5: $\nabla \bar{f}(\theta_t) =$ AGGREGATEGRADIENTS (θ_t)

6:
$$y_{t+1} = \theta_t - \eta \nabla \overline{f}(\theta_t)$$

7:
$$heta_{t+1} = (1+\mu)y_{t+1} - \mu y_t$$

- 8: end for
- 9: return θ_T

Master/slave algorithm

Simple master/slave distribution of Nesterov's accelerated gradient descent.

Input: number of iterations T > 0, communication network \mathcal{G} , $\eta = \frac{1}{\beta_{\sigma}}$,

$$\mu = \frac{\sqrt{\kappa_g} - 1}{\sqrt{\kappa_g} + 1}$$
 Output: θ_T

1: Compute a spanning tree ${\mathcal T}$ on ${\mathcal G}$

2:
$$\theta_0 = 0$$
, $y_0 = 0$

- 3: for t = 0 to T 1 do
- 4: Send θ_t to all nodes through \mathcal{T}
- 5: $\nabla \bar{f}(\theta_t) =$ AGGREGATEGRADIENTS (θ_t)

6:
$$y_{t+1} = \theta_t - \eta \nabla \overline{f}(\theta_t)$$

7:
$$\theta_{t+1} = (1+\mu)y_{t+1} - \mu y_t$$

- 8: end for
- 9: return θ_T

Master/slave algorithm

Simple master/slave distribution of Nesterov's accelerated gradient descent.

Input: number of iterations T > 0, communication network \mathcal{G} , $\eta = \frac{1}{\beta_{\sigma}}$,

$$\mu = \frac{\sqrt{\kappa_g} - 1}{\sqrt{\kappa_g} + 1}$$
 Output: θ_T

1: Compute a spanning tree ${\mathcal T}$ on ${\mathcal G}$

2:
$$\theta_0 = 0$$
, $y_0 = 0$

- 3: for t = 0 to T 1 do
- 4: Send θ_t to all nodes through \mathcal{T}
- 5: $\nabla \bar{f}(\theta_t) =$ AGGREGATEGRADIENTS (θ_t)

6:
$$y_{t+1} = \theta_t - \eta \nabla \overline{f}(\theta_t)$$

7:
$$\theta_{t+1} = (1+\mu)y_{t+1} - \mu y_t$$

- 8: end for
- 9: return θ_T

Master/slave algorithm

Simple master/slave distribution of Nesterov's accelerated gradient descent.

Convergence rate

- Each iteration requires a time $1 + 2\Delta\tau$,
- ▶ Reaches a precision $\varepsilon > 0$ in time

$$O\left(\sqrt{\kappa_g}\left(1+\Delta \tau\right)\ln\left(rac{1}{arepsilon}
ight)
ight).$$

Francis Bach

Drawbacks of this approach

- Not robust to changes in the connectivity of the network,
- ▶ Requires waiting for all machines to compute their local gradients.

Drawbacks of this approach

- Not robust to changes in the connectivity of the network,
- Requires waiting for all machines to compute their local gradients.

A natural solution: decentralized algorithms

- Asynchronous computations,
- Machines do not wait for one another,
- Communication is not interrupted by a change in the network.

Related works

Large literature for decentralized optimization

- Distributed SGD (Nedic & Ozdaglar, 2009)
- Decentralized dual averaging (Duchi et al., 2012)
- ► D-ADMM (Boyd et al., 2011; $O(\frac{2}{\sqrt{1+4\kappa}})$ Wei & Ozdaglar, 2012; Shi et al., 2014 ; Lutzeler et al., 2016)
- EXTRA algorithm (Shi et al., 2015; Mokhtari & Ribeiro, 2016)
- Augmented Lagrangians (Jakovetić et al., 2015)
- DIGing (Nedich et al., 2016)

 $O(\frac{n^{3}R^{2}L^{2}}{\varepsilon^{2}})$ $O(\frac{R^{2}L^{2}}{\gamma(W)\varepsilon^{2}})$ $O(\frac{2\kappa_{l}^{2}}{\sqrt{1+4\kappa_{l}^{2}\gamma(W)-1}}\ln\left(\frac{1}{\varepsilon}\right))$ al., 2016) $\exists \delta > 0 \text{ s.t. } O(\delta \ln\left(\frac{1}{\varepsilon}\right))$

$$\begin{array}{l} O(\frac{2\kappa_l^2}{\sqrt{1+4\kappa_l^2\gamma(W)}-1}\ln\left(\frac{1}{\varepsilon}\right))\\ O(n^{4.5}\kappa_l^{1.5}\ln\left(\frac{1}{\varepsilon}\right)) \end{array}$$

LCCC workshop

. . .

Decentralized algorithms

Optimal convergence rate?

- ▶ Decentralized convergence rates usually depend on the (normalized) eigengap γ(W),
- ► For simple graphs (linear graphs, regular graphs), $\Delta \approx \frac{1}{\sqrt{\gamma(W)}}$, where W is the Laplacian matrix,

• Can we have
$$\Theta\left(\sqrt{\kappa_g}\left(1+\frac{\tau}{\sqrt{\gamma(W)}}\right)\ln\left(\frac{1}{\varepsilon}\right)\right)$$
?

Decentralized algorithms

Optimal convergence rate?

- Decentralized convergence rates usually depend on the (normalized) eigengap \(\gamma(W)\),
- ► For simple graphs (linear graphs, regular graphs), $\Delta \approx \frac{1}{\sqrt{\gamma(W)}}$, where W is the Laplacian matrix,

► Can we have
$$\Theta\left(\sqrt{\kappa_g}\left(1+\frac{\tau}{\sqrt{\gamma(W)}}\right)\ln\left(\frac{1}{\varepsilon}\right)\right)$$
?

► No! Sometimes $\frac{1}{\sqrt{\gamma(W)}} \approx \frac{\Delta}{\ln n}$ (Ramanujan graphs and Erdös-Rényi random networks)...

Decentralized algorithms

Optimal convergence rate?

- Decentralized convergence rates usually depend on the (normalized) eigengap \(\gamma(W)\),
- ► For simple graphs (linear graphs, regular graphs), $\Delta \approx \frac{1}{\sqrt{\gamma(W)}}$, where W is the Laplacian matrix,

► Can we have
$$\Theta\left(\sqrt{\kappa_g}\left(1+\frac{\tau}{\sqrt{\gamma(W)}}\right)\ln\left(\frac{1}{\varepsilon}\right)\right)$$
?

► No! Sometimes $\frac{1}{\sqrt{\gamma(W)}} \approx \frac{\Delta}{\ln n}$ (Ramanujan graphs and Erdös-Rényi random networks)...

Optimal algorithm?

 \blacktriangleright We can achieve this rate if we replace $\kappa_{\rm g}$ by $\kappa_{\rm I}\geq\kappa_{\rm g},$

Based on a double acceleration: accelerated gradient descent and accelerated gossip!

Francis Bach

Lower bound on convergence rate

Theorem 2 (SBBLM, 2017)

Let $\alpha, \beta > 0$ and $\gamma \in (0, 1]$. There exists a gossip matrix W of eigengap $\gamma(W) = \gamma$, and α -strongly convex and β -smooth functions $f_i : \ell_2 \to \mathbb{R}$ such that, for any $t \ge 0$ and any black-box procedure using W one has, for all $i \in \{1, ..., n\}$,

$$\bar{f}(\theta_{i,t}) - \bar{f}(\theta^*) \geq \frac{3\alpha}{2} \left(1 - \frac{16}{\sqrt{\kappa_I}}\right)^{1 + \frac{t}{1 + \frac{\tau}{5\sqrt{\gamma}}}} \|\theta_{i,0} - \theta^*\|^2$$

Lower bound on convergence rate

Theorem 2 (SBBLM, 2017)

Let $\alpha, \beta > 0$ and $\gamma \in (0, 1]$. There exists a gossip matrix W of eigengap $\gamma(W) = \gamma$, and α -strongly convex and β -smooth functions $f_i : \ell_2 \to \mathbb{R}$ such that, for any $t \ge 0$ and any black-box procedure using W one has, for all $i \in \{1, ..., n\}$,

$$\bar{f}(\theta_{i,t}) - \bar{f}(\theta^*) \geq \frac{3\alpha}{2} \left(1 - \frac{16}{\sqrt{\kappa_I}}\right)^{1 + \frac{t}{1 + \frac{\tau}{5\sqrt{\gamma}}}} \|\theta_{i,0} - \theta^*\|^2$$

Take-home message

For any $\gamma > 0$, there exists a gossip matrix W of eigengap γ there exist functions f_i such that the time to reach a precision $\varepsilon > 0$ is lower bounded by

$$\Omega\left(\sqrt{\kappa_{I}}\left(1+\frac{\tau}{\sqrt{\gamma}}\right)\ln\left(\frac{1}{\varepsilon}\right)\right)$$

Lower bound on convergence rate

Theorem 2 (SBBLM, 2017)

Let $\alpha, \beta > 0$ and $\gamma \in (0, 1]$. There exists a gossip matrix W of eigengap $\gamma(W) = \gamma$, and α -strongly convex and β -smooth functions $f_i : \ell_2 \to \mathbb{R}$ such that, for any $t \ge 0$ and any black-box procedure using W one has, for all $i \in \{1, ..., n\}$,

$$\bar{f}(\theta_{i,t}) - \bar{f}(\theta^*) \geq \frac{3\alpha}{2} \left(1 - \frac{16}{\sqrt{\kappa_I}}\right)^{1 + \frac{t}{1 + \frac{\tau}{5\sqrt{\gamma}}}} \|\theta_{i,0} - \theta^*\|^2$$

Take-home message

For any $\gamma > 0$, there exists a gossip matrix W of eigengap γ there exist functions f_i such that the time to reach a precision $\varepsilon > 0$ is lower bounded by

$$\Omega\left(\sqrt{\kappa_{l}}\left(1+\frac{\tau}{\sqrt{\gamma}}\right)\ln\left(\frac{1}{\varepsilon}\right)\right)$$

Naive algorithm does not work!

Francis Bach

Reformulation of the optimization problem

• Using the gossip matrix to ensure equality of all θ_i (Jakovetić et al., 2015),

$$\min_{\theta \in \mathbb{R}^d} \bar{f}(\theta) = \min_{\Theta \in \mathbb{R}^{d \times n} : \Theta \sqrt{W} = 0} F(\Theta),$$

where $F(\Theta) = \sum_{i=1}^{n} f_i(\theta_i)$, with $\Theta = (\theta_1, \dots, \theta_n) \in \mathbb{R}^{d \times n}$

Reformulation of the optimization problem

• Using the gossip matrix to ensure equality of all θ_i (Jakovetić et al., 2015),

$$\min_{\theta \in \mathbb{R}^d} \bar{f}(\theta) = \min_{\Theta \in \mathbb{R}^{d \times n} : \Theta \sqrt{W} = 0} F(\Theta),$$

where $F(\Theta) = \sum_{i=1}^{n} f_i(\theta_i)$, with $\Theta = (\theta_1, \dots, \theta_n) \in \mathbb{R}^{d \times n}$ Dual version:

$$\max_{\lambda \in \mathbb{R}^{d \times n}} - F^*(\lambda \sqrt{W})$$

Gradient descent in the dual:

$$\lambda_{t+1} = \lambda_t - \eta \nabla F^*(\lambda_t \sqrt{W}) \sqrt{W},$$

and the change of variable $y_t = \lambda_t \sqrt{W}$ leads to

$$y_{t+1} = y_t - \eta \nabla F^*(y_t) W.$$

A double acceleration: (1) accelerated gradient descent

The dual problem

$$\max_{\lambda \in \mathbb{R}^{d \times n}} - F^*(\lambda \sqrt{W})$$

is an unconstrained strongly convex and smooth problem with condition number $\frac{\kappa_l}{\gamma(W)}.$

A double acceleration: (1) accelerated gradient descent

The dual problem

$$\max_{\lambda \in \mathbb{R}^{d \times n}} - F^*(\lambda \sqrt{W})$$

is an unconstrained strongly convex and smooth problem with condition number $\frac{\kappa_l}{\gamma(W)}$.

Nesterov's accelerated gradient descent reaches a precision $\varepsilon > 0$ in

$$O\left(\sqrt{rac{\kappa_l}{\gamma(W)}}\left(1+ au
ight)\ln\left(rac{1}{arepsilon}
ight)
ight).$$

 Optimal w.r.t. the communication time... but not in the number of gradient steps.

A double acceleration: (2) accelerated gossip

- \blacktriangleright Only one gossip step per local computation: suboptimal when $\tau \ll 1!$
- Accelerated gossip: replacing W by a polynomial $P_{\mathcal{K}}(W)$.
 - Cao et al. (2006), Kokiopoulou and Frossard (2009), Cavalcante et al. (2011)

A double acceleration: (2) accelerated gossip

- Only one gossip step per local computation: suboptimal when $au \ll 1!$
- Accelerated gossip: replacing W by a polynomial $P_{\mathcal{K}}(W)$.
 - Cao et al. (2006), Kokiopoulou and Frossard (2009), Cavalcante et al. (2011)
- Chebyshev polynomials lead to the best convergence rates:

$$P_{\mathcal{K}}(x) = 1 - \frac{T_{\mathcal{K}}(c_2(1-x))}{T_{\mathcal{K}}(c_2)},$$

where $c_2 = \frac{1+\gamma}{1-\gamma}$ and T_K are the Chebyshev polynomials defined as $T_0(x) = 1$, $T_1(x) = x$, and, for all $k \ge 1$,

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x).$$

A double acceleration: (2) accelerated gossip

- \blacktriangleright Only one gossip step per local computation: suboptimal when $\tau \ll 1!$
- Accelerated gossip: replacing W by a polynomial $P_{\mathcal{K}}(W)$.
 - Cao et al. (2006), Kokiopoulou and Frossard (2009), Cavalcante et al. (2011)
- Chebyshev polynomials lead to the best convergence rates:

$$P_{\mathcal{K}}(x) = 1 - \frac{T_{\mathcal{K}}(c_2(1-x))}{T_{\mathcal{K}}(c_2)},$$

where $c_2 = \frac{1+\gamma}{1-\gamma}$ and T_K are the Chebyshev polynomials defined as $T_0(x) = 1$, $T_1(x) = x$, and, for all $k \ge 1$,

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x).$$

▶ With $K = \left\lfloor \frac{1}{\sqrt{\gamma(W)}} \right\rfloor$, reaches a precision $\varepsilon > 0$ in time $O\left(\sqrt{\frac{\kappa_l}{\gamma(P_K(W))}} \left(1 + K\tau\right) \ln\left(\frac{1}{\varepsilon}\right)\right) = O\left(\sqrt{\kappa_l} \left(1 + \frac{\tau}{\sqrt{\gamma}}\right) \ln\left(\frac{1}{\varepsilon}\right)\right).$

Francis Bach

Optimal decentralized algorithm

Multi-step Dual Accelerated (MSDA)

Input: gossip matrix $W \in \mathbb{R}^{n \times n}$, T > 0Output: $\theta_{i,T}$, for i = 1, ..., n1: $x_0 = 0$, $y_0 = 0$ 2: for t = 0 to T - 1 do 3: $\theta_{i,t} = \nabla f_i^*(x_{i,t})$, for all i = 1, ..., n4: $y_{t+1} = x_t - \eta$ ACCGOSSIP (Θ_t, W, K)

5:
$$x_{t+1} = (1 + \mu)y_{t+1} - \mu y_t$$

6: end for

1: procedure ACCGOSSIP(x, W, K)

2:
$$a_0 = 1$$
, $a_1 = c_2$

3:
$$x_0 = x$$
, $x_1 = c_2 x (I - c_3 W)$

4: **for**
$$k = 1$$
 to $K - 1$ **do**

5:
$$a_{k+1} = 2c_2a_k - a_{k-1}$$

$$5: \quad x_{k+1} = 2c_2 x_k (I - c_3 W) - x_{k-1}$$

8: return
$$x_0 - \frac{x_K}{a_K}$$

9: end procedure

Experiments: logistic regression

Optimization problem

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^m \ln\left(1 + e^{-y_i \cdot X_i^\top \theta}\right) + c \|\theta\|_2^2$$

Communication network

- Left: Erdös-Rényi random graph of 100 nodes and average degree 6,
- Right: Square grid of 10 × 10 nodes.

Francis Bach

Conclusion

Conclusion

- First optimal convergence rates for distributed optimization in networks,
- ► Optimal centralized convergence rate: $\Theta\left(\sqrt{\kappa_g}\left(1+\Delta\tau\right)\ln\left(\frac{1}{\varepsilon}\right)\right)$,

• Optimal decentralized convergence rate: $\Theta\left(\sqrt{\kappa_I}\left(1+\frac{\tau}{\sqrt{\gamma}}\right)\ln\left(\frac{1}{\varepsilon}\right)\right)$.

Conclusion

Conclusion

- First optimal convergence rates for distributed optimization in networks,
- ► Optimal centralized convergence rate: $\Theta\left(\sqrt{\kappa_g}\left(1+\Delta\tau\right)\ln\left(\frac{1}{\varepsilon}\right)\right)$,

• Optimal decentralized convergence rate: $\Theta\left(\sqrt{\kappa_I}\left(1+\frac{\tau}{\sqrt{\gamma}}\right)\ln\left(\frac{1}{\varepsilon}\right)\right)$.

Extensions

- Beyond strong-convexity, stochastic problems
- Asynchronous algorithms
- Decentralized rate in κ_g ?
- Primal-only optimal decentralized algorithm,
 - Composite functions $f_i(\theta) = g_i(B_i\theta) + c \|\theta\|^2$
 - Approximation of the proximal point algorithm
 - Time varying networks, delays, failures, etc.

Thank you!

