Optimal convergence rates for distributed optimization

Francis Bach - Inria - Ecole Normale Supérieure, Paris

Joint work with K. Scaman, S. Bubeck, Y.-T. Lee and L. Massoulié LCCC Workshop - June 2017

Mic
Microsoft Research - Inria JOINT CENTRE

Motivations

User data

Machine clusters
$\theta \in \mathbb{R}^{d}$ $\min _{\theta \in \mathbb{R}^{d}} \frac{1}{m} \sum_{i=1}^{m} \ln \left(1+e^{-y_{i} \cdot X_{i}^{\top} \theta}\right)+c\|\theta\|_{2}^{2}$

Learned model

Typical Machine Learning setting

- Empirical risk minimization:

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{m} \sum_{i=1}^{m} \ell\left(x_{i}, y_{i} ; \theta\right)+c\|\theta\|_{2}^{2}
$$

- Large scale learning systems handle massive amounts of data
- Requires multiple machines to train the model

Motivations

User data

Machine clusters

$$
\begin{gathered}
\theta \in \mathbb{R} d \\
\left.\min _{\substack{\min }}^{\frac{1}{m}} \sum_{i=1}^{m} \ln \left(1+e^{-u \cdot x_{i}^{\top} \theta}\right)+c \right\rvert\, \theta \|_{2}^{2}
\end{gathered}
$$

Learned model

Typical Machine Learning setting

- Empirical risk minimization: logistic regression

$$
\min _{\theta \in \mathbb{R}^{d}} \frac{1}{m} \sum_{i=1}^{m} \log \left(1+\exp \left(-y_{i} x_{i}^{\top} \theta\right)\right)+c\|\theta\|_{2}^{2}
$$

- Large scale learning systems handle massive amounts of data
- Requires multiple machines to train the model

Optimization with a single machine

"Best" convergence rate for strongly-convex and smooth functions

- Number of iterations to reach a precision $\varepsilon>0$ (Nesterov, 2004):

$$
\Theta\left(\sqrt{\kappa} \ln \left(\frac{1}{\varepsilon}\right)\right)
$$

where κ is the condition number of the function to optimize.

- Consequence of $f\left(\theta_{t}\right)-f\left(\theta^{*}\right) \leqslant \beta(1-1 / \sqrt{\kappa})^{t}\left\|\theta_{0}-\theta^{*}\right\|^{2}$
- ...but each iteration requires \mathbf{m} gradients to compute!

Optimization with a single machine

"Best" convergence rate for strongly-convex and smooth functions

- Number of iterations to reach a precision $\varepsilon>0$ (Nesterov, 2004):

$$
\Theta\left(\sqrt{\kappa} \ln \left(\frac{1}{\varepsilon}\right)\right)
$$

where κ is the condition number of the function to optimize.

- Consequence of $f\left(\theta_{t}\right)-f\left(\theta^{*}\right) \leqslant \beta(1-1 / \sqrt{\kappa})^{t}\left\|\theta_{0}-\theta^{*}\right\|^{2}$
- ...but each iteration requires \mathbf{m} gradients to compute!

Upper and lower bounds of complexity
$\underset{\text { algorithms }}{\inf } \sup _{\text {functions }}$ \#iterations to reach ε

- Upper-bound: exhibit an algorithm (here Nesterov acceleration)
- Lower-bound: exhibit a hard function where all algorithms fail

Distributing information on a network

Centralized algorithms

- "Master/slave"
- Minimal number of communication steps $=$ Diameter Δ

Decentralized algorithms

- Gossip algorithms (Boyd et.al., 2006 ; Shah, 2009)
- Mixing time of the Markov chain on the graph \approx inverse of the second smallest eigenvalue γ of the Laplacian

Goals of this work

Beyond single machine optimization

\Rightarrow Can we improve on $\Theta\left(m \sqrt{\kappa} \ln \left(\frac{1}{\varepsilon}\right)\right)$?

- Is the speed up linear?
- How does a limited bandwidth affects optimization algorithms?

Goals of this work

Beyond single machine optimization

- Can we improve on $\Theta\left(m \sqrt{\kappa} \ln \left(\frac{1}{\varepsilon}\right)\right)$?
- Is the speed up linear?
- How does a limited bandwidth affects optimization algorithms?

Extending optimization theory to distributed architectures

- Optimal convergence rates of first order distributed methods,
- Optimal algorithms achieving this rate,
- Beyond flat (totally connected) architectures (Arjevani and Shamir, 2015),
- Explicit dependence on optimization parameters and graph parameters.

Distributed optimization setting

Optimization problem

Let f_{i} be α-strongly convex and β-smooth functions. We consider minimizing the average of the local functions.

$$
\min _{\theta \in \mathbb{R}^{d}} \bar{f}(\theta)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(\theta)
$$

- Machine learning: distributed observations

Distributed optimization setting

Optimization problem

Let f_{i} be α-strongly convex and β-smooth functions. We consider minimizing the average of the local functions.

$$
\min _{\theta \in \mathbb{R}^{d}} \bar{f}(\theta)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(\theta)
$$

- Machine learning: distributed observations

Optimization procedures

We consider distributed first-order optimization procedures: access to gradients (or gradients of the Fenchel conjugates).

Distributed optimization setting

Optimization problem

Let f_{i} be α-strongly convex and β-smooth functions. We consider minimizing the average of the local functions.

$$
\min _{\theta \in \mathbb{R}^{d}} \bar{f}(\theta)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(\theta)
$$

- Machine learning: distributed observations

Optimization procedures

We consider distributed first-order optimization procedures: access to gradients (or gradients of the Fenchel conjugates).

Network communications
Let $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ be a connected simple graph of n computing units and diameter Δ, each having access to a function $f_{i}(\theta)$ over $\theta \in \mathbb{R}^{d}$.

Strong convexity and smoothness

Strong convexity

A function f is α-strongly convex iff. $\forall x, y \in \mathbb{R}^{d}$,

$$
f(y) \geq f(x)+\nabla f(x)^{\top}(y-x)+\alpha\|y-x\|^{2} .
$$

Smoothness

A function f is β-smooth convex iff. $\forall x, y \in \mathbb{R}^{d}$,

$$
f(y) \leq f(x)+\nabla f(x)^{\top}(y-x)+\beta\|y-x\|^{2} .
$$

Notations

$\nabla \kappa_{l}=\frac{\beta}{\alpha}$ (local) condition number of each f_{i},
$>\kappa_{g}=\frac{\beta_{g}}{\alpha_{g}}($ global $)$ condition number of \bar{f},

- $\kappa_{g} \leqslant \kappa_{l}$, equal if all functions f_{i} equal.

Communication network

Assumptions

- Each local computation takes a unit of time,
- Each communication between neighbors takes a time τ,
- Actions may be performed in parallel and asynchronously.

Distributed optimization algorithms

Black-box procedures

We consider distributed algorithms verifying the following constraints:

1. Local memory: each node i can store past values in an internal memory $\mathcal{M}_{i, t} \subset \mathbb{R}^{d}$ at time $t \geq 0$.

$$
\mathcal{M}_{i, t} \subset \mathcal{M}_{i, t}^{\text {comp }} \cup \mathcal{M}_{i, t}^{c o m m}, \theta_{i, t} \in \mathcal{M}_{i, t} .
$$

2. Local computation: each node i can, at time t, compute the gradient of its local function $\nabla f_{i}(\theta)$ or its Fenchel conjugate $\nabla f_{i}^{*}(\theta)$, where $f^{*}(\theta)=\sup _{x} x^{\top} \theta-f(x)$.

$$
\mathcal{M}_{i, t}^{\text {comp }}=\operatorname{Span}\left(\left\{\theta, \nabla f_{i}(\theta), \nabla f_{i}^{*}(\theta): \theta \in \mathcal{M}_{i, t-1}\right\}\right) .
$$

3. Local communication: each node i can, at time t, share a value to all or part of its neighbors.

$$
\mathcal{M}_{i, t}^{\text {comm }}=\operatorname{Span}\left(\bigcup_{(i, j) \in \mathcal{E}} \mathcal{M}_{j, t-\tau}\right)
$$

Centralized vs. decentralized architectures

Centralized communication

- One master machine is responsible for sending requests and synchronizing computation,
- Slave machines perform computations upon request and send the result to the master.

Centralized vs. decentralized architectures

Centralized communication

- One master machine is responsible for sending requests and synchronizing computation,
- Slave machines perform computations upon request and send the result to the master.

Decentralized communication

- All machines perform local computations and share values with their neighbors,
- Local averaging is performed through gossip (Boyd et.al., 2006).
$>$ Node i receives $\sum_{j} W_{i j} x_{j}=(W x)_{i}$, where W verifies:

1. W is an $n \times n$ symmetric matrix,
2. W is defined on the edges of the network: $W_{i j} \neq 0$ only if $i=j$ or $(i, j) \in \mathcal{E}$,
3. W is positive semi-definite,
4. The kernel of W is the set of constant vectors: $\operatorname{Ker}(W)=\operatorname{Span}(\mathbb{1})$, where $1=(1, \ldots, 1)^{\top}$.
\triangleright Let $\gamma(W)=\lambda_{n-1}(W) / \lambda_{1}(W)$ be the (normalized) eigengap of W.

Lower bound on convergence rate

Theorem 1 (SBBLM, 2017)

Let \mathcal{G} be a graph of diameter $\Delta>0$ and size $n>0$, and $\beta_{g} \geq \alpha_{g}>0$. There exist n functions $f_{i}: \ell_{2} \rightarrow \mathbb{R}$ such that \bar{f} is $\alpha_{\boldsymbol{g}}$-strongly-convex and β_{g}-smooth, and for any $t \geq 0$ and any black-box procedure one has, for all $i \in\{1, \ldots, n\}$,

$$
\bar{f}\left(\theta_{i, t}\right)-\bar{f}\left(\theta^{*}\right) \geq \frac{\alpha_{g}}{2}\left(1-\frac{4}{\sqrt{\kappa g}}\right)^{1+\frac{t}{1+\Delta \tau}}\left\|\theta_{i, 0}-\theta^{*}\right\|^{2}
$$

Lower bound on convergence rate

Theorem 1 (SBBLM, 2017)

Let \mathcal{G} be a graph of diameter $\Delta>0$ and size $n>0$, and $\beta_{g} \geq \alpha_{g}>0$. There exist n functions $f_{i}: \ell_{2} \rightarrow \mathbb{R}$ such that \bar{f} is α_{g}-strongly-convex and β_{g}-smooth, and for any $t \geq 0$ and any black-box procedure one has, for all $i \in\{1, \ldots, n\}$,

$$
\bar{f}\left(\theta_{i, t}\right)-\bar{f}\left(\theta^{*}\right) \geq \frac{\alpha_{g}}{2}\left(1-\frac{4}{\sqrt{\kappa_{g}}}\right)^{1+\frac{t}{1+\Delta \tau}}\left\|\theta_{i, 0}-\theta^{*}\right\|^{2}
$$

Take-home message

For any graph of diameter Δ and any black-box procedure, there exist functions f_{i} such that the time to reach a precision $\varepsilon>0$ is lower bounded by

$$
\Omega\left(\sqrt{\kappa_{g}}(1+\Delta \tau) \ln \left(\frac{1}{\varepsilon}\right)\right)
$$

- Extends the totally connected result of Arjevani \& Shamir (2015)

Proof warm-up: single machine

- Simplification: ℓ_{2} instead of \mathbb{R}^{d}.
- Goal: design a worst-case convex function f.
- From Nesterov (2004), Bubeck (2015):

$$
f(\theta)=\frac{\alpha(\kappa-1)}{8}\left[\theta^{\top} A \theta-2 \theta_{1}\right]+\frac{\alpha}{2}\|\theta\|_{2}^{2}
$$

with A infinite tridiagonal matrix with 2 on the diagonal, and -1 on the upper and lower diagonal.

Proof warm-up: single machine

- Simplification: ℓ_{2} instead of \mathbb{R}^{d}.
- Goal: design a worst-case convex function f.
- From Nesterov (2004), Bubeck (2015):

$$
f(\theta)=\frac{\alpha(\kappa-1)}{8}\left[\theta^{\top} A \theta-2 \theta_{1}\right]+\frac{\alpha}{2}\|\theta\|_{2}^{2}
$$

with A infinite tridiagonal matrix with 2 on the diagonal, and -1 on the upper and lower diagonal.

- Facts $1: 0 \preccurlyeq A \preccurlyeq 4 I, f$ is α-strongly convex and β-smooth
- Fact 2: starting from $\theta_{0}=0$, after t gradient steps, θ_{t} is supported on the first t coordinates $\Rightarrow\left\|\theta_{t}-\theta^{*}\right\|^{2} \geqslant \sum_{i>t}\left\|\theta_{i}^{*}\right\|^{2}$
- Get lower bound $f\left(\theta_{t}\right)-f\left(\theta^{*}\right) \geqslant \frac{\alpha}{2}\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{2 t}\left\|\theta_{0}-\theta_{*}\right\|^{2}$ after some computations

Proof warm-up: single machine

- Simplification: ℓ_{2} instead of \mathbb{R}^{d}.
- Goal: design a worst-case convex function f.
- From Nesterov (2004), Bubeck (2015):

$$
f(\theta)=\frac{\alpha(\kappa-1)}{8}\left[\theta^{\top} A \theta-2 \theta_{1}\right]+\frac{\alpha}{2}\|\theta\|_{2}^{2}
$$

with A infinite tridiagonal matrix with 2 on the diagonal, and -1 on the upper and lower diagonal. $\theta^{\top} A \theta=\theta_{1}^{2}+\sum_{i \geqslant 1}\left(\theta_{i}-\theta_{i+1}\right)^{2}$

- Facts 1: $0 \preccurlyeq A \preccurlyeq 4 I, f$ is α-strongly convex and β-smooth
- Fact 2: starting from $\theta_{0}=0$, after t gradient steps, θ_{t} is supported on the first t coordinates $\Rightarrow\left\|\theta_{t}-\theta^{*}\right\|^{2} \geqslant \sum_{i>t}\left\|\theta_{i}^{*}\right\|^{2}$
- Get lower bound $f\left(\theta_{t}\right)-f\left(\theta^{*}\right) \geqslant \frac{\alpha}{2}\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{2 t}\left\|\theta_{0}-\theta_{*}\right\|^{2}$ after some computations

Proof sketch (1)

- Simplification: ℓ_{2} instead of \mathbb{R}^{d}.
- Extremal nodes: i_{0} and i_{1} at distance Δ.
- Functions to optimize: Splitting the usual Nesterov function

$$
f_{i}(\theta)= \begin{cases}\frac{\alpha}{2}\|\theta\|_{2}^{2}+n \frac{\beta-\alpha}{8}\left(\theta^{\top} M_{1} \theta-\theta_{1}\right) & \text { if } i=i_{0} \\ \frac{\alpha}{2}\|\theta\|_{2}^{2}+n \frac{\beta-\alpha}{8} \theta^{\top} M_{2} \theta & \text { if } i=i_{1} \\ \frac{\alpha}{2}\|\theta\|_{2}^{2} & \text { otherwise }\end{cases}
$$

where $M_{1}: \ell_{2} \rightarrow \ell_{2}$ is the infinite block diagonal matrix with $\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$ on the diagonal, and $M_{2}=\left(\begin{array}{cc}1 & 0 \\ 0 & M_{1}\end{array}\right)$.

- Optimal value: $\theta_{k}^{*}=\left(\frac{\sqrt{\beta}-\sqrt{\alpha}}{\sqrt{\beta}+\sqrt{\alpha}}\right)^{k}$.

Proof sketch (2)

Proof sketch (3)

- If $\theta_{i, 0}=0$, each local computation can only increase the number of non zero dimensions by one.
$\nabla \nabla f_{i_{0}}\left(\theta_{i_{0}, t}\right)$ increases odd dimensions, $\nabla f_{i_{1}}\left(\theta_{i_{1}, t}\right)$ increases even dimensions.
- Δ communication steps are required to communicate between i_{0} and i_{1}.
- $\theta_{i, t, k} \neq 0$ after at least k computation steps and $k \Delta$ communication steps.
- \bar{f} is α-strongly convex and β-smooth, and

$$
\bar{f}\left(\theta_{i, t}\right)-\bar{f}\left(\theta^{*}\right) \geq \frac{\alpha}{2}\left\|\theta_{i, t}-\theta^{*}\right\|_{2}^{2} \geq \frac{\alpha}{2} \sum_{k=k_{i, t}+1}^{+\infty} \theta_{k}^{* 2}
$$

where $k_{i, t}=\max \left\{k \in \mathbb{N}: \exists \theta \in \mathcal{M}_{i, t}\right.$ s.t. $\left.\theta_{k} \neq 0\right\} \leq\left\lfloor\frac{t+\Delta \tau}{1+\Delta \tau}\right\rfloor$.

Simple is good...!

Master/slave algorithm

Simple master/slave distribution of Nesterov's accelerated gradient descent.

Input: number of iterations $T>0$, communication network $\mathcal{G}, \eta=\frac{1}{\beta_{g}}$, $\mu=\frac{\sqrt{\kappa_{\mathrm{g}}}-1}{\sqrt{\kappa_{\mathrm{g}}}+1}$
Output: θ_{T}
1: Compute a spanning tree \mathcal{T} on \mathcal{G}
2: $\theta_{0}=0, y_{0}=0$
3: for $t=0$ to $T-1$ do
4: \quad Send θ_{t} to all nodes through \mathcal{T}
5: $\quad \nabla \bar{f}\left(\theta_{t}\right)=$ agGregategradients $\left(\theta_{t}\right)$
6: $\quad y_{t+1}=\theta_{t}-\eta \nabla \bar{f}\left(\theta_{t}\right)$
7: $\quad \theta_{t+1}=(1+\mu) y_{t+1}-\mu y_{t}$
8: end for
9: return θ_{T}

Simple is good...!

Master/slave algorithm

Simple master/slave distribution of Nesterov's accelerated gradient descent.

Input: number of iterations $T>0$, communication network $\mathcal{G}, \eta=\frac{1}{\beta_{g}}$, $\mu=\frac{\sqrt{\kappa_{\mathrm{g}}}-1}{\sqrt{\kappa_{\mathrm{g}}}+1}$
Output: θ_{T}
1: Compute a spanning tree \mathcal{T} on \mathcal{G}
2: $\theta_{0}=0, y_{0}=0$
3: for $t=0$ to $T-1$ do
4: \quad Send θ_{t} to all nodes through \mathcal{T}
5: $\quad \nabla \bar{f}\left(\theta_{t}\right)=$ agGregategradients $\left(\theta_{t}\right)$
6: $\quad y_{t+1}=\theta_{t}-\eta \nabla \bar{f}\left(\theta_{t}\right)$
7: $\quad \theta_{t+1}=(1+\mu) y_{t+1}-\mu y_{t}$
8: end for
9: return θ_{T}

Simple is good...!

Master/slave algorithm

Simple master/slave distribution of Nesterov's accelerated gradient descent.

Input: number of iterations $T>0$, communication network $\mathcal{G}, \eta=\frac{1}{\beta_{g}}$, $\mu=\frac{\sqrt{\kappa_{\mathrm{g}}}-1}{\sqrt{\kappa_{\mathrm{g}}}+1}$
Output: θ_{T}
1: Compute a spanning tree \mathcal{T} on \mathcal{G}
2: $\theta_{0}=0, y_{0}=0$
3: for $t=0$ to $T-1$ do
4: \quad Send θ_{t} to all nodes through \mathcal{T}
5: $\quad \nabla \bar{f}\left(\theta_{t}\right)=$ agGregateGradients $\left(\theta_{t}\right)$
6: $\quad y_{t+1}=\theta_{t}-\eta \nabla \bar{f}\left(\theta_{t}\right)$
7: $\quad \theta_{t+1}=(1+\mu) y_{t+1}-\mu y_{t}$
8: end for
9: return θ_{T}

Simple is good...!

Master/slave algorithm

Simple master/slave distribution of Nesterov's accelerated gradient descent.

Input: number of iterations $T>0$, communication network $\mathcal{G}, \eta=\frac{1}{\beta_{g}}$, $\mu=\frac{\sqrt{\kappa_{\mathrm{g}}}-1}{\sqrt{\kappa_{\mathrm{g}}}+1}$
Output: θ_{T}
1: Compute a spanning tree \mathcal{T} on \mathcal{G}
2: $\theta_{0}=0, y_{0}=0$
3: for $t=0$ to $T-1$ do
4: \quad Send θ_{t} to all nodes through \mathcal{T}
5: $\quad \nabla \bar{f}\left(\theta_{t}\right)=$ agGregateGradients $\left(\theta_{t}\right)$
6: $\quad y_{t+1}=\theta_{t}-\eta \nabla \bar{f}\left(\theta_{t}\right)$
7: $\quad \theta_{t+1}=(1+\mu) y_{t+1}-\mu y_{t}$
8: end for
9: return θ_{T}

Simple is good...!

Master/slave algorithm

Simple master/slave distribution of Nesterov's accelerated gradient descent.

Input: number of iterations $T>0$, communication network $\mathcal{G}, \eta=\frac{1}{\beta_{g}}$, $\mu=\frac{\sqrt{\kappa_{\mathrm{g}}}-1}{\sqrt{\kappa_{\mathrm{g}}}+1}$
Output: θ_{T}
1: Compute a spanning tree \mathcal{T} on \mathcal{G}
2: $\theta_{0}=0, y_{0}=0$
3: for $t=0$ to $T-1$ do
4: \quad Send θ_{t} to all nodes through \mathcal{T}
5: $\quad \nabla \bar{f}\left(\theta_{t}\right)=$ agGregategradients $\left(\theta_{t}\right)$
6: $\quad y_{t+1}=\theta_{t}-\eta \nabla \bar{f}\left(\theta_{t}\right)$
7: $\quad \theta_{t+1}=(1+\mu) y_{t+1}-\mu y_{t}$
8: end for
9: return θ_{T}

Simple is good...!

Master/slave algorithm

Simple master/slave distribution of Nesterov's accelerated gradient descent.

Convergence rate

- Each iteration requires a time $1+2 \Delta \tau$,
- Reaches a precision $\varepsilon>0$ in time

$$
O\left(\sqrt{\kappa_{g}}(1+\Delta \tau) \ln \left(\frac{1}{\varepsilon}\right)\right) .
$$

Drawbacks

Drawbacks of this approach

- Not robust to changes in the connectivity of the network,
- Requires waiting for all machines to compute their local gradients.

Drawbacks

Drawbacks of this approach

- Not robust to changes in the connectivity of the network,
- Requires waiting for all machines to compute their local gradients.

A natural solution: decentralized algorithms

- Asynchronous computations,
- Machines do not wait for one another,
- Communication is not interrupted by a change in the network.

Related works

Large literature for decentralized optimization

- Distributed SGD (Nedic \& Ozdaglar, 2009)
$O\left(\frac{n^{3} R^{2} L^{2}}{\varepsilon^{2}}\right)$
- Decentralized dual averaging (Duchi et al., 2012) $O\left(\frac{R^{2} L^{2}}{\gamma(W) \varepsilon^{2}}\right)$
- D-ADMM (Boyd et al., 2011; Wei \& Ozdaglar, 2012; Shi et al., 2014 ; Lutzeler et al., 2016)
- EXTRA algorithm (Shi et al., 2015;

Mokhtari \& Ribeiro, 2016)

- Augmented Lagrangians (Jakovetić et al., 2015)
- DIGing (Nedich et al., 2016)

$$
\exists \delta>0 \text { s.t. } O\left(\delta \ln \left(\frac{1}{\varepsilon}\right)\right)
$$

$O\left(\frac{2 \kappa_{\lambda}^{2}}{\sqrt{1+4 \kappa_{i}^{2} \gamma(W)}-1} \ln \left(\frac{1}{\varepsilon}\right)\right)$

Decentralized algorithms

Optimal convergence rate?

- Decentralized convergence rates usually depend on the (normalized) eigengap $\gamma(W)$,
- For simple graphs (linear graphs, regular graphs), $\Delta \approx \frac{1}{\sqrt{\gamma(W)}}$, where W is the Laplacian matrix,
\Rightarrow Can we have $\Theta\left(\sqrt{\kappa_{g}}\left(1+\frac{\tau}{\sqrt{\gamma(W)}}\right) \ln \left(\frac{1}{\varepsilon}\right)\right)$?

Decentralized algorithms

Optimal convergence rate?

- Decentralized convergence rates usually depend on the (normalized) eigengap $\gamma(W)$,
- For simple graphs (linear graphs, regular graphs), $\Delta \approx \frac{1}{\sqrt{\gamma(W)}}$, where W is the Laplacian matrix,
- Can we have $\Theta\left(\sqrt{\kappa_{g}}\left(1+\frac{\tau}{\sqrt{\gamma(W)}}\right) \ln \left(\frac{1}{\varepsilon}\right)\right)$?
- No! Sometimes $\frac{1}{\sqrt{\gamma(W)}} \approx \frac{\Delta}{\ln n}$ (Ramanujan graphs and Erdös-Rényi random networks)...

Decentralized algorithms

Optimal convergence rate?

- Decentralized convergence rates usually depend on the (normalized) eigengap $\gamma(W)$,
- For simple graphs (linear graphs, regular graphs), $\Delta \approx \frac{1}{\sqrt{\gamma(W)}}$, where W is the Laplacian matrix,
- Can we have $\Theta\left(\sqrt{\kappa_{g}}\left(1+\frac{\tau}{\sqrt{\gamma(W)}}\right) \ln \left(\frac{1}{\varepsilon}\right)\right)$?
\triangleright No! Sometimes $\frac{1}{\sqrt{\gamma(W)}} \approx \frac{\Delta}{\ln n}$ (Ramanujan graphs and Erdös-Rényi random networks)...

Optimal algorithm?

- We can achieve this rate if we replace κ_{g} by $\kappa_{l} \geq \kappa_{g}$,
- Based on a double acceleration: accelerated gradient descent and accelerated gossip!

Lower bound on convergence rate

Theorem 2 (SBBLM, 2017)

Let $\alpha, \beta>0$ and $\gamma \in(0,1]$. There exists a gossip matrix W of eigengap $\gamma(W)=\gamma$, and α-strongly convex and β-smooth functions $f_{i}: \ell_{2} \rightarrow \mathbb{R}$ such that, for any $t \geq 0$ and any black-box procedure using W one has, for all $i \in\{1, \ldots, n\}$,

$$
\bar{f}\left(\theta_{i, t}\right)-\bar{f}\left(\theta^{*}\right) \geq \frac{3 \alpha}{2}\left(1-\frac{16}{\sqrt{\kappa_{l}}}\right)^{1+\frac{t}{1+\frac{\tau}{\sqrt{\gamma}}}}\left\|\theta_{i, 0}-\theta^{*}\right\|^{2}
$$

Lower bound on convergence rate

Theorem 2 (SBBLM, 2017)

Let $\alpha, \beta>0$ and $\gamma \in(0,1]$. There exists a gossip matrix W of eigengap $\gamma(W)=\gamma$, and α-strongly convex and β-smooth functions $f_{i}: \ell_{2} \rightarrow \mathbb{R}$ such that, for any $t \geq 0$ and any black-box procedure using W one has, for all $i \in\{1, \ldots, n\}$,

$$
\bar{f}\left(\theta_{i, t}\right)-\bar{f}\left(\theta^{*}\right) \geq \frac{3 \alpha}{2}\left(1-\frac{16}{\sqrt{\kappa_{l}}}\right)^{1+\frac{t}{1+\frac{\tau}{\sqrt{\gamma}}}}\left\|\theta_{i, 0}-\theta^{*}\right\|^{2} .
$$

Take-home message

For any $\gamma>0$, there exists a gossip matrix W of eigengap γ there exist functions f_{i} such that the time to reach a precision $\varepsilon>0$ is lower bounded by

$$
\Omega\left(\sqrt{\kappa_{l}}\left(1+\frac{\tau}{\sqrt{\gamma}}\right) \ln \left(\frac{1}{\varepsilon}\right)\right)
$$

Lower bound on convergence rate

Theorem 2 (SBBLM, 2017)

Let $\alpha, \beta>0$ and $\gamma \in(0,1]$. There exists a gossip matrix W of eigengap $\gamma(W)=\gamma$, and α-strongly convex and β-smooth functions $f_{i}: \ell_{2} \rightarrow \mathbb{R}$ such that, for any $t \geq 0$ and any black-box procedure using W one has, for all $i \in\{1, \ldots, n\}$,

$$
\bar{f}\left(\theta_{i, t}\right)-\bar{f}\left(\theta^{*}\right) \geq \frac{3 \alpha}{2}\left(1-\frac{16}{\sqrt{\kappa_{l}}}\right)^{1+\frac{t}{1+\frac{t}{\sqrt{\gamma}}}}\left\|\theta_{i, 0}-\theta^{*}\right\|^{2} .
$$

Take-home message

For any $\gamma>0$, there exists a gossip matrix W of eigengap γ there exist functions f_{i} such that the time to reach a precision $\varepsilon>0$ is lower bounded by

$$
\Omega\left(\sqrt{\kappa_{l}}\left(1+\frac{\tau}{\sqrt{\gamma}}\right) \ln \left(\frac{1}{\varepsilon}\right)\right)
$$

Naive algorithm does not work!

Reformulation of the optimization problem

- Using the gossip matrix to ensure equality of all θ_{i} (Jakovetić et al., 2015),

$$
\min _{\theta \in \mathbb{R}^{d}} \bar{f}(\theta)=\min _{\Theta \in \mathbb{R}^{d \times n}: \Theta \sqrt{W}=0} F(\Theta),
$$

where $F(\Theta)=\sum_{i=1}^{n} f_{i}\left(\theta_{i}\right)$, with $\Theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{d \times n}$

Reformulation of the optimization problem

- Using the gossip matrix to ensure equality of all θ_{i} (Jakovetić et al., 2015),

$$
\min _{\theta \in \mathbb{R}^{d}} \bar{f}(\theta)=\min _{\Theta \in \mathbb{R}^{d \times n}: \Theta \sqrt{W}=0} F(\Theta),
$$

where $F(\Theta)=\sum_{i=1}^{n} f_{i}\left(\theta_{i}\right)$, with $\Theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{d \times n}$

- Dual version:

$$
\max _{\lambda \in \mathbb{R}^{d \times n}}-F^{*}(\lambda \sqrt{W})
$$

- Gradient descent in the dual:

$$
\lambda_{t+1}=\lambda_{t}-\eta \nabla F^{*}\left(\lambda_{t} \sqrt{W}\right) \sqrt{W}
$$

and the change of variable $y_{t}=\lambda_{t} \sqrt{W}$ leads to

$$
y_{t+1}=y_{t}-\eta \nabla F^{*}\left(y_{t}\right) W
$$

A double acceleration: (1) accelerated gradient descent

- The dual problem

$$
\max _{\lambda \in \mathbb{R}^{d \times n}}-F^{*}(\lambda \sqrt{W})
$$

is an unconstrained strongly convex and smooth problem with condition number $\frac{\kappa_{1}}{\gamma(W)}$.

A double acceleration: (1) accelerated gradient descent

- The dual problem

$$
\max _{\lambda \in \mathbb{R}^{d \times n}}-F^{*}(\lambda \sqrt{W})
$$

is an unconstrained strongly convex and smooth problem with condition number $\frac{\kappa_{1}}{\gamma(W)}$.

- Nesterov's accelerated gradient descent reaches a precision $\varepsilon>0$ in

$$
O\left(\sqrt{\frac{\kappa_{I}}{\gamma(W)}}(1+\tau) \ln \left(\frac{1}{\varepsilon}\right)\right) .
$$

- Optimal w.r.t. the communication time... but not in the number of gradient steps.

A double acceleration: (2) accelerated gossip

- Only one gossip step per local computation: suboptimal when $\tau \ll 1$!
- Accelerated gossip: replacing W by a polynomial $P_{K}(W)$.
- Cao et al. (2006), Kokiopoulou and Frossard (2009), Cavalcante et al. (2011)

A double acceleration: (2) accelerated gossip

- Only one gossip step per local computation: suboptimal when $\tau \ll 1$!
- Accelerated gossip: replacing W by a polynomial $P_{K}(W)$.
- Cao et al. (2006), Kokiopoulou and Frossard (2009), Cavalcante et al. (2011)
- Chebyshev polynomials lead to the best convergence rates:

$$
P_{K}(x)=1-\frac{T_{K}\left(c_{2}(1-x)\right)}{T_{K}\left(c_{2}\right)},
$$

where $c_{2}=\frac{1+\gamma}{1-\gamma}$ and T_{K} are the Chebyshev polynomials defined as $T_{0}(x)=1, T_{1}(x)=x$, and, for all $k \geq 1$,

$$
T_{k+1}(x)=2 x T_{k}(x)-T_{k-1}(x)
$$

A double acceleration: (2) accelerated gossip

- Only one gossip step per local computation: suboptimal when $\tau \ll 1$!
- Accelerated gossip: replacing W by a polynomial $P_{K}(W)$.
- Cao et al. (2006), Kokiopoulou and Frossard (2009), Cavalcante et al. (2011)
- Chebyshev polynomials lead to the best convergence rates:

$$
P_{K}(x)=1-\frac{T_{K}\left(c_{2}(1-x)\right)}{T_{K}\left(c_{2}\right)}
$$

where $c_{2}=\frac{1+\gamma}{1-\gamma}$ and T_{K} are the Chebyshev polynomials defined as $T_{0}(x)=1, T_{1}(x)=x$, and, for all $k \geq 1$,

$$
T_{k+1}(x)=2 x T_{k}(x)-T_{k-1}(x) .
$$

- With $K=\left\lfloor\frac{1}{\sqrt{\gamma(W)}}\right\rfloor$, reaches a precision $\varepsilon>0$ in time

$$
O\left(\sqrt{\frac{\kappa_{l}}{\gamma\left(P_{K}(W)\right)}}(1+K \tau) \ln \left(\frac{1}{\varepsilon}\right)\right)=O\left(\sqrt{\kappa_{l}}\left(1+\frac{\tau}{\sqrt{\gamma}}\right) \ln \left(\frac{1}{\varepsilon}\right)\right) .
$$

Optimal decentralized algorithm

Multi-step Dual Accelerated (MSDA)

Input: gossip matrix $W \in \mathbb{R}^{n \times n}, T>0$
Output: $\theta_{i, T}$, for $i=1, \ldots, n$
1: $x_{0}=0, y_{0}=0$
2: for $t=0$ to $T-1$ do
3: $\quad \theta_{i, t}=\nabla f_{i}^{*}\left(x_{i, t}\right)$, for all $i=1, \ldots, n$
4: $\quad y_{t+1}=x_{t}-\eta$
$\operatorname{AccGossip}\left(\Theta_{t}, W, K\right)$
5: $\quad x_{t+1}=(1+\mu) y_{t+1}-\mu y_{t}$
6: end for

1: procedure $\operatorname{ACCGOSSIP}(x, W, K)$
2: $a_{0}=1, a_{1}=c_{2}$
3: $x_{0}=x, x_{1}=c_{2} x\left(I-c_{3} W\right)$
4: for $k=1$ to $K-1$ do
5: $\quad a_{k+1}=2 c_{2} a_{k}-a_{k-1}$
6: $\quad x_{k+1}=2 c_{2} x_{k}\left(I-c_{3} W\right)-x_{k-1}$
7: end for
8: return $x_{0}-\frac{x_{K}}{a_{K}}$
9: end procedure

Experiments: logistic regression

Optimization problem

$\min _{\theta \in \mathbb{R}^{d}} \frac{1}{m} \sum_{i=1}^{m} \ln \left(1+e^{-y_{i} \cdot X_{i}^{\top} \theta}\right)$

$$
+c\|\theta\|_{2}^{2}
$$

Communication network

- Left: Erdös-Rényi random graph of 100 nodes and average degree 6,
- Right: Square grid of 10×10 nodes.

(a) high communication time: $\tau=10$

(b) low communication time: $\tau=0.1$

(a) high communication time: $\tau=10$

(b) low communication time: $\tau=0.1$

Conclusion

Conclusion

- First optimal convergence rates for distrbuted optimization in networks,
- Optimal centralized convergence rate: $\Theta\left(\sqrt{\kappa_{g}}(1+\Delta \tau) \ln \left(\frac{1}{\varepsilon}\right)\right)$,
- Optimal decentralized convergence rate: $\Theta\left(\sqrt{\kappa_{l}}\left(1+\frac{\tau}{\sqrt{\gamma}}\right) \ln \left(\frac{1}{\varepsilon}\right)\right)$.

Conclusion

Conclusion

- First optimal convergence rates for distrbuted optimization in networks,
- Optimal centralized convergence rate: $\Theta\left(\sqrt{\kappa_{g}}(1+\Delta \tau) \ln \left(\frac{1}{\varepsilon}\right)\right)$,
- Optimal decentralized convergence rate: $\Theta\left(\sqrt{\kappa_{l}}\left(1+\frac{\tau}{\sqrt{\gamma}}\right) \ln \left(\frac{1}{\varepsilon}\right)\right)$.

Extensions

- Beyond strong-convexity, stochastic problems
- Asynchronous algorithms
- Decentralized rate in κ_{g} ?
- Primal-only optimal decentralized algorithm,
- Composite functions $f_{i}(\theta)=g_{i}\left(B_{i} \theta\right)+c\|\theta\|^{2}$
- Approximation of the proximal point algorithm
- Time varying networks, delays, failures, etc.

Thank you!

