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Many parallelization scenarios:
Synchronous parallelism

e Asynchronous parallelism
Delayed updates

e * Few/many workers

* Infrequent communication
A * Federated learning
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What is the best we can hope for in a given parallelism scenario?



What is the best we can hope for in a given parallelism scenario?

* We formalize the parallelism in terms of a dependency graph:

Ancestors(ug)
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* At each node u, make a query based only on knowledge of ancestors’
oracle interaction (plus shared randomness)

* Graph defines class of optimization algorithms A(G)
* Come to our poster for details



e Sequential:

* Layer:

* Delays:

* Intermittent
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Generic Lower Bounds

Theorem: For any dependency graph G with /N nodes and depth D, no algorithm
for optimizing convex, [.-Lipschitz, [/-smooth f(z;2) on a bounded domain in high
dimensions can guarantee error less than:

With stochastic gradient oracle:
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Generic Lower Bounds

Theorem: For any dependency graph G with /N nodes and depth D, no algorithm
for optimizing convex, [.-Lipschitz, [/-smooth f(z;2) on a bounded domain in high
dimensions can guarantee error less than:

With stochastic gradient oracle:
0 , L H | L
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With stochastic prox oracle:
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Prox oracle: x, 3, z — argmin f(y; z) + g |y — 93H2
y

i.e. exactly optimize subproblem in each node (ADMM, DANE, etc.)
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* SGD is optimal
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* Delays:
e Delayed-update SGD is not
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e “Wait-and-Collect” minibatch @O
is optimal

* Intermittent O >0 >0
Communication:
e Gaps between existing O > >
algorithms and lower bound
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* Option 1: Accelerated Minibatch SGD O <H2 + L >
T TKM

Minibatch#1 i Minibatch#2 i Minibatch#3 {  Minibatch #4

Calculate 2 Calculate x3 Calculate T4 Calculate I'5
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* Option 1: Accelerated Minibatch SGD O + Ti(M>

Minibatch#1 i Minibatch#2 i Minibatch#3 {  Minibatch #4

Calculate 2 Calculate x3 Calculate T4 Calculate I'5



* Lower bound: Q(min{ L , H }+ L )
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e Option 1: Accelerated Minibatch SGD O <Hz L
T TKM
L
* Option 2: Sequential SGD 0, <_
Sequential SGD steps
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e Option 1: Accelerated Minibatch SGD O
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* Option 2: Sequential SGD

* Option 3: SVRG on empirical objective O
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Calculate full gradient in parallel 5 Sequential variance-reduced updates
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Aggregate full gradient
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 Option 3: SVRG on empirical objective O
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Calculate full gradient in parallel 5 Sequential variance-reduced updates
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Aggregate full gradient



* Lower bound: © (min{
e Option 1: Accelerated Minibatch SGD O
* Option 2: Sequential SGD O
* Option 3: SVRG on empirical objective O
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e Option 1: Accelerated Minibatch SGD O
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* Option 2: Sequential SGD

* Option 3: SVRG on empirical objective O

 Combining 1-3:
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e Option 1: Accelerated Minibatch SGD O
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* Option 2: Sequential SGD

* Option 3: SVRG on empirical objective O

 Combining 1-3:
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* Option 4: Parallel SGD 27?7
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tonight from 5-7pm



