Decentralize and Randomize: Faster Algorithm for Wasserstein Barycenters

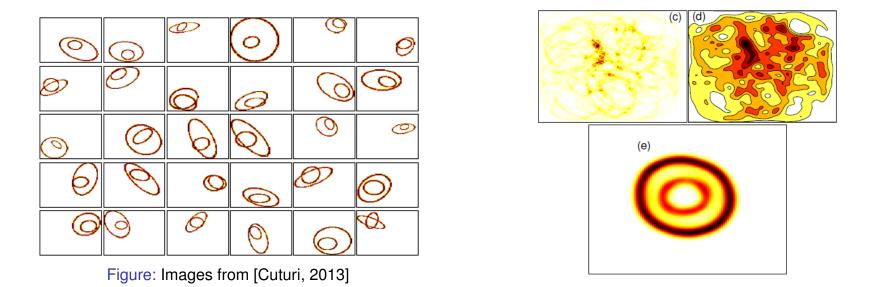
Conference on Neural Information Processing Systems 2018

Wasserstein barycenter

$$\hat{\nu} = \arg\min_{\nu \in \mathcal{P}_2(\Omega)} \sum_{i=1}^m \mathcal{W}(\mu_i, \nu),$$

where $\mathcal{W}(\mu, \nu)$ is the Wasserstein distance between measures μ and ν on Ω .

WB is efficient in machine learning problems with geometric data, e.g. template image reconstruction from random sample:



Motivation

We fix the support z_i , i = 1, ..., n of the barycenter: $\nu = \sum_{i=1}^n p_i \delta(z_i)$.

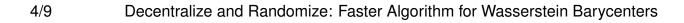
We add Entropic regularization with parameter γ .

$$\hat{p} = \arg\min_{p \in S_1(n)} \sum_{i=1}^m \mathcal{W}_{\gamma,\mu_i}(p).$$

Challenges:

- ${\scriptstyle \bullet}$ Fine discrete approximation for ν and $\mu \Rightarrow {\rm large}\; n$,
- \blacksquare Large amount of data \Rightarrow large m ,
- Data produced and stored distributedly (e.g. produced by a network of sensors),
- Possibly continuous measures μ_i .

Paper	Large m, n	DIST. DATA	Cont. μ_i	COMPL-TY
SINKHORN-TYPE [Cuturi&Doucet'14, Benamou et al.'15]	\checkmark	×	×	?
DISTRIBUTED AGD [Scaman et al.'17, Uribe et al.'17, Lan et al.'17]	\checkmark	\checkmark	×	?
SGD-BASED [Staib et.al.'17, Claici et al.'18]	\checkmark	×	\checkmark	$1/\varepsilon^2$
THIS PAPER	\checkmark	\checkmark	\checkmark	$1/\varepsilon^2$



- Novel Accelerated Primal-Dual Stochastic Gradient Method (APDSGD) for general class of stochastic optimization problems with linear constraints
 - $(P): \qquad \min_{x \in Q \subseteq E} \left\{ f(x) : Ax = b \right\}, \quad (D): \qquad \min_{\lambda} \left\{ \langle \lambda, b \rangle + \mathbb{E}_{\xi} F^*(-A^T \lambda, \xi) \right\}.$

with complexity

$$O\left(\max\left\{\sqrt{\frac{L_D R_D^2}{\varepsilon}}, \frac{\sigma^2 R_D^2}{\varepsilon^2}\right\}\right)$$

to obtain

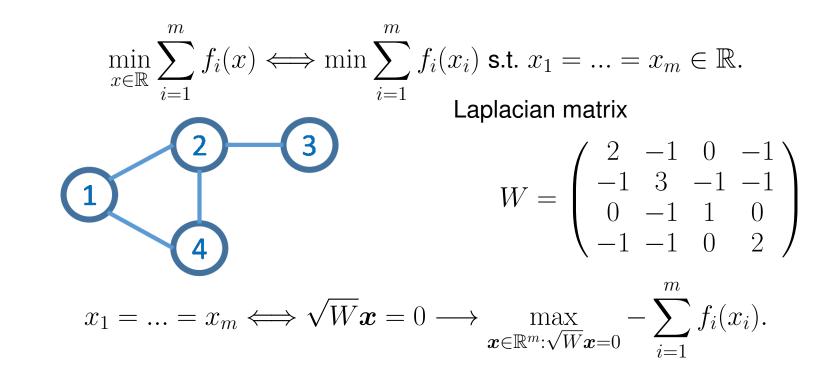
$$f(\mathbb{E}\hat{x}) - f^* \le \varepsilon$$
 and $||A\mathbb{E}\hat{x} - b||_2 \le \varepsilon$.

 Decentralized distributed algorithm for γ-regularized Wasserstein barycenter of a set of continuous measures stored over a network with arbitrary topology with complexity

$$O\left(mn \max\left\{\frac{1}{\sqrt{\varepsilon\gamma}}, \frac{m}{\varepsilon^2}\right\}\right)$$
 a.o.

Experimens on the MNIST digit dataset and the IXI Magnetic Resonance dataset.

Distributed optimization framework¹



Distributed reformulation through dual problem

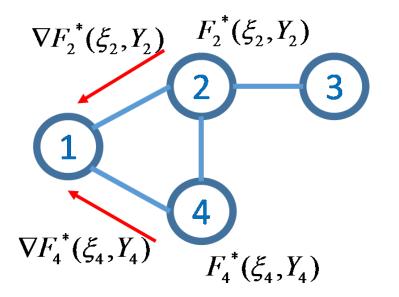
$$\min_{\boldsymbol{\lambda} \in \mathbb{R}^m} \sum_{i=1}^m f_i^* \left(\left[\sqrt{W} \boldsymbol{\lambda} \right]_i \right) = \min_{\boldsymbol{\lambda} \in \mathbb{R}^m} \sum_{i=1}^m \mathbb{E}_{Y_i \sim \mu_i} F_i^* \left(\left[\sqrt{W} \boldsymbol{\lambda} \right]_i, Y_i \right).$$

¹[Boyd et al.'11, Jakovetić et al.'15, Scaman et al.'17, Uribe et al.'17, Lan et al.'17]

6/9 Decentralize and Randomize: Faster Algorithm for Wasserstein Barycenters

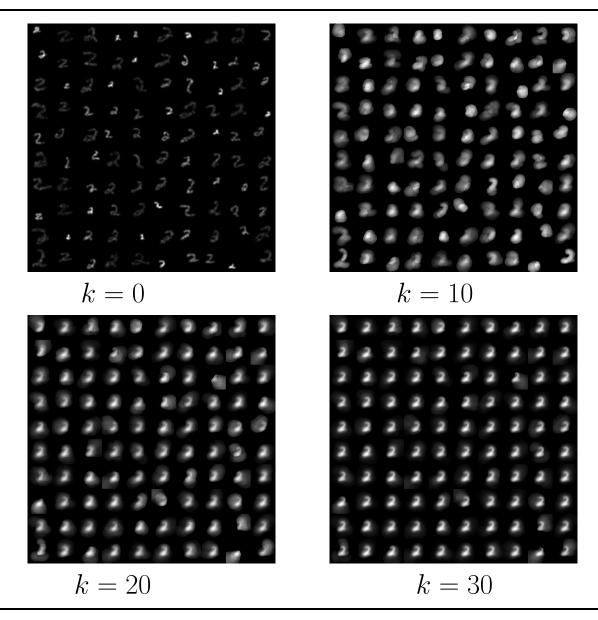
Change the variables $\boldsymbol{\xi} := \sqrt{W} \boldsymbol{\lambda}$.

SGD step for each node $i: \xi_i^{(k+1)} = \xi_i^{(k)} - \alpha \sum_{j=1}^m [W]_{ij} \nabla F_j^* (\xi_j, Y_j)$.



Our contribution: Acceleration and careful Primal-Dual analysis for solving the primal problem.

Experiments on MNIST dataset



8/9

Thank you!

Welcome to poster #15, Room 210 & 230 AB.

