This is the public, feature-limited version of the conference webpage. After Registration and login please visit the full version.

Memory-Efficient Learning of Stable Linear Dynamical Systems for Prediction and Control

Giorgos Mamakoukas, Orest Xherija, Todd Murphey

Poster Session 6 (more posters)
on 2020-12-10T09:00:00-08:00 - 2020-12-10T11:00:00-08:00
Abstract: Learning a stable Linear Dynamical System (LDS) from data involves creating models that both minimize reconstruction error and enforce stability of the learned representation. We propose a novel algorithm for learning stable LDSs. Using a recent characterization of stable matrices, we present an optimization method that ensures stability at every step and iteratively improves the reconstruction error using gradient directions derived in this paper. When applied to LDSs with inputs, our approach---in contrast to current methods for learning stable LDSs---updates both the state and control matrices, expanding the solution space and allowing for models with lower reconstruction error. We apply our algorithm in simulations and experiments to a variety of problems, including learning dynamic textures from image sequences and controlling a robotic manipulator. Compared to existing approaches, our proposed method achieves an \textit{orders-of-magnitude} improvement in reconstruction error and superior results in terms of control performance. In addition, it is \textit{provably} more memory efficient, with an $\mathcal{O}(n^2)$ space complexity compared to $\mathcal{O}(n^4)$ of competing alternatives, thus scaling to higher-dimensional systems when the other methods fail. The code of the proposed algorithm and animations of the results can be found at https://github.com/giorgosmamakoukas/MemoryEfficientStableLDS.

Preview Video and Chat

To see video, interact with the author and ask questions please use registration and login.