This is the public, feature-limited version of the conference webpage. After Registration and login please visit the full version.

First Order Constrained Optimization in Policy Space

Yiming Zhang, Quan Vuong, Keith Ross

Spotlight presentation: Orals & Spotlights Track 04: Reinforcement Learning
on Tue, Dec 8th, 2020 @ 03:00 – 03:10 GMT
Poster Session 1 (more posters)
on Tue, Dec 8th, 2020 @ 05:00 – 07:00 GMT
Abstract: In reinforcement learning, an agent attempts to learn high-performing behaviors through interacting with the environment, such behaviors are often quantified in the form of a reward function. However some aspects of behavior—such as ones which are deemed unsafe and to be avoided—are best captured through constraints. We propose a novel approach called First Order Constrained Optimization in Policy Space (FOCOPS) which maximizes an agent's overall reward while ensuring the agent satisfies a set of cost constraints. Using data generated from the current policy, FOCOPS first finds the optimal update policy by solving a constrained optimization problem in the nonparameterized policy space. FOCOPS then projects the update policy back into the parametric policy space. Our approach has an approximate upper bound for worst-case constraint violation throughout training and is first-order in nature therefore simple to implement. We provide empirical evidence that our simple approach achieves better performance on a set of constrained robotics locomotive tasks.

Preview Video and Chat

To see video, interact with the author and ask questions please use registration and login.