This is the public, feature-limited version of the conference webpage. After Registration and login please visit the full version.

Orals & Spotlights Track 02: COVID/Health/Bio Applications

Each Oral includes Q&A
Spotlights have joint Q&As

Time

2020-12-07T18:00:00-08:00 - 2020-12-07T21:00:00-08:00

Session chairs

Tristan Naumann, James Zou

Video

Chat

To ask questions please use rocketchat, available only upon registration and login.

Schedule

2020-12-07T18:00:00-08:00 - 2020-12-07T18:15:00-08:00
1 - Oral: When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and Policy Assessment using Compartmental Gaussian Processes
Zhaozhi Qian, Ahmed Alaa, Mihaela van der Schaar
The coronavirus disease 2019 (COVID-19) global pandemic has led many countries to impose unprecedented lockdown measures in order to slow down the outbreak. Questions on whether governments have acted promptly enough, and whether lockdown measures can be lifted soon have since been central in public discourse. Data-driven models that predict COVID-19 fatalities under different lockdown policy scenarios are essential for addressing these questions, and for informing governments on future policy directions. To this end, this paper develops a Bayesian model for predicting the effects of COVID-19 containment policies in a global context — we treat each country as a distinct data point, and exploit variations of policies across countries to learn country-specific policy effects. Our model utilizes a two-layer Gaussian process (GP) prior — the lower layer uses a compartmental SEIR (Susceptible, Exposed, Infected, Recovered) model as a prior mean function with “country-and-policy-specific” parameters that capture fatality curves under different “counterfactual” policies within each country, whereas the upper layer is shared across all countries, and learns lower-layer SEIR parameters as a function of country features and policy indicators. Our model combines the solid mechanistic foundations of SEIR models (Bayesian priors) with the flexible data-driven modeling and gradient-based optimization routines of machine learning (Bayesian posteriors) — i.e., the entire model is trained end-to-end via stochastic variational inference. We compare the projections of our model with other models listed by the Center for Disease Control (CDC), and provide scenario analyses for various lockdown and reopening strategies highlighting their impact on COVID-19 fatalities.
2020-12-07T18:15:00-08:00 - 2020-12-07T18:30:00-08:00
2 - Oral: Multi-Task Temporal Shift Attention Networks for On-Device Contactless Vitals Measurement
Xin Liu, Josh Fromm, Shwetak Patel, Daniel McDuff
Telehealth and remote health monitoring have become increasingly important during the SARS-CoV-2 pandemic and it is widely expected that this will have a lasting impact on healthcare practices. These tools can help reduce the risk of exposing patients and medical staff to infection, make healthcare services more accessible, and allow providers to see more patients. However, objective measurement of vital signs is challenging without direct contact with a patient. We present a video-based and on-device optical cardiopulmonary vital sign measurement approach. It leverages a novel multi-task temporal shift convolutional attention network (MTTS-CAN) and enables real-time cardiovascular and respiratory measurements on mobile platforms. We evaluate our system on an Advanced RISC Machine (ARM) CPU and achieve state-of-the-art accuracy while running at over 150 frames per second which enables real-time applications. Systematic experimentation on large benchmark datasets reveals that our approach leads to substantial (20%-50%) reductions in error and generalizes well across datasets.
2020-12-07T18:30:00-08:00 - 2020-12-07T18:45:00-08:00
3 - Oral: Neural encoding with visual attention
Meenakshi Khosla, Gia Ngo, Keith Jamison, Amy Kuceyeski, Mert Sabuncu
Visual perception is critically influenced by the focus of attention. Due to limited resources, it is well known that neural representations are biased in favor of attended locations. Using concurrent eye-tracking and functional Magnetic Resonance Imaging (fMRI) recordings from a large cohort of human subjects watching movies, we first demonstrate that leveraging gaze information, in the form of attentional masking, can significantly improve brain response prediction accuracy in a neural encoding model. Next, we propose a novel approach to neural encoding by including a trainable soft-attention module. Using our new approach, we demonstrate that it is possible to learn visual attention policies by end-to-end learning merely on fMRI response data, and without relying on any eye-tracking. Interestingly, we find that attention locations estimated by the model on independent data agree well with the corresponding eye fixation patterns, despite no explicit supervision to do so. Together, these findings suggest that attention modules can be instrumental in neural encoding models of visual stimuli.
2020-12-07T18:45:00-08:00 - 2020-12-07T19:00:00-08:00
Break
2020-12-07T19:00:00-08:00 - 2020-12-07T19:10:00-08:00
5 - Spotlight: Simulating a Primary Visual Cortex at the Front of CNNs Improves Robustness to Image Perturbations
Joel Dapello, Tiago Marques, Martin Schrimpf, Franziska Geiger, David Cox, James J DiCarlo
Current state-of-the-art object recognition models are largely based on convolutional neural network (CNN) architectures, which are loosely inspired by the primate visual system. However, these CNNs can be fooled by imperceptibly small, explicitly crafted perturbations, and struggle to recognize objects in corrupted images that are easily recognized by humans. Here, by making comparisons with primate neural data, we first observed that CNN models with a neural hidden layer that better matches primate primary visual cortex (V1) are also more robust to adversarial attacks. Inspired by this observation, we developed VOneNets, a new class of hybrid CNN vision models. Each VOneNet contains a fixed weight neural network front-end that simulates primate V1, called the VOneBlock, followed by a neural network back-end adapted from current CNN vision models. The VOneBlock is based on a classical neuroscientific model of V1: the linear-nonlinear-Poisson model, consisting of a biologically-constrained Gabor filter bank, simple and complex cell nonlinearities, and a V1 neuronal stochasticity generator. After training, VOneNets retain high ImageNet performance, but each is substantially more robust, outperforming the base CNNs and state-of-the-art methods by 18% and 3%, respectively, on a conglomerate benchmark of perturbations comprised of white box adversarial attacks and common image corruptions. Finally, we show that all components of the VOneBlock work in synergy to improve robustness. While current CNN architectures are arguably brain-inspired, the results presented here demonstrate that more precisely mimicking just one stage of the primate visual system leads to new gains in ImageNet-level computer vision applications.
2020-12-07T19:10:00-08:00 - 2020-12-07T19:20:00-08:00
6 - Spotlight: Using noise to probe recurrent neural network structure and prune synapses
Eli Moore, Rishidev Chaudhuri
Many networks in the brain are sparsely connected, and the brain eliminates synapses during development and learning. How could the brain decide which synapses to prune? In a recurrent network, determining the importance of a synapse between two neurons is a difficult computational problem, depending on the role that both neurons play and on all possible pathways of information flow between them. Noise is ubiquitous in neural systems, and often considered an irritant to be overcome. Here we suggest that noise could play a functional role in synaptic pruning, allowing the brain to probe network structure and determine which synapses are redundant. We construct a simple, local, unsupervised plasticity rule that either strengthens or prunes synapses using only synaptic weight and the noise-driven covariance of the neighboring neurons. For a subset of linear and rectified-linear networks, we prove that this rule preserves the spectrum of the original matrix and hence preserves network dynamics even when the fraction of pruned synapses asymptotically approaches 1. The plasticity rule is biologically-plausible and may suggest a new role for noise in neural computation.
2020-12-07T19:20:00-08:00 - 2020-12-07T19:30:00-08:00
7 - Spotlight: Interpretable Sequence Learning for Covid-19 Forecasting
Sercan Arik, Chun-Liang Li, Jinsung Yoon, Rajarishi Sinha, Arkady Epshteyn, Long Le, Vikas Menon, Shashank Singh, Leyou Zhang, Martin Nikoltchev, Yash Sonthalia, Hootan Nakhost, Elli Kanal, Tomas Pfister
We propose a novel approach that integrates machine learning into compartmental disease modeling (e.g., SEIR) to predict the progression of COVID-19. Our model is explainable by design as it explicitly shows how different compartments evolve and it uses interpretable encoders to incorporate covariates and improve performance. Explainability is valuable to ensure that the model's forecasts are credible to epidemiologists and to instill confidence in end-users such as policy makers and healthcare institutions. Our model can be applied at different geographic resolutions, and we demonstrate it for states and counties in the United States. We show that our model provides more accurate forecasts compared to the alternatives, and that it provides qualitatively meaningful explanatory insights.
2020-12-07T19:30:00-08:00 - 2020-12-07T19:40:00-08:00
8 - Spotlight: Kalman Filtering Attention for User Behavior Modeling in CTR Prediction
Hu Liu, Jing LU, Xiwei Zhao, Sulong Xu, Hao Peng, Yutong Liu, Zehua Zhang, Jian Li, Junsheng Jin, Yongjun Bao, Weipeng Yan
Click-through rate (CTR) prediction is one of the fundamental tasks for e-commerce search engines. As search becomes more personalized, it is necessary to capture the user interest from rich behavior data. Existing user behavior modeling algorithms develop different attention mechanisms to emphasize query-relevant behaviors and suppress irrelevant ones. Despite being extensively studied, these attentions still suffer from two limitations. First, conventional attentions mostly limit the attention field only to a single user's behaviors, which is not suitable in e-commerce where users often hunt for new demands that are irrelevant to any historical behaviors. Second, these attentions are usually biased towards frequent behaviors, which is unreasonable since high frequency does not necessarily indicate great importance. To tackle the two limitations, we propose a novel attention mechanism, termed Kalman Filtering Attention (KFAtt), that considers the weighted pooling in attention as a maximum a posteriori (MAP) estimation. By incorporating a priori, KFAtt resorts to global statistics when few user behaviors are relevant. Moreover, a frequency capping mechanism is incorporated to correct the bias towards frequent behaviors. Offline experiments on both benchmark and a 10 billion scale real production dataset, together with an Online A/B test, show that KFAtt outperforms all compared state-of-the-arts. KFAtt has been deployed in the ranking system of JD.com, one of the largest B2C e-commerce websites in China, serving the main traffic of hundreds of millions of active users.
2020-12-07T19:40:00-08:00 - 2020-12-07T19:50:00-08:00
Q&A: Joint Q&A for Preceeding Spotlights
2020-12-07T19:50:00-08:00 - 2020-12-07T20:00:00-08:00
10 - Spotlight: Demixed shared component analysis of neural population data from multiple brain areas
Yu Takagi, Steven Kennerley, Jun-ichiro Hirayama, Laurence Hunt
Recent advances in neuroscience data acquisition allow for the simultaneous recording of large populations of neurons across multiple brain areas while subjects perform complex cognitive tasks. Interpreting these data requires us to index how task-relevant information is shared across brain regions, but this is often confounded by the mixing of different task parameters at the single neuron level. Here, inspired by a method developed for a single brain area, we introduce a new technique for demixing variables across multiple brain areas, called demixed shared component analysis (dSCA). dSCA decomposes population activity into a few components, such that the shared components capture the maximum amount of shared information across brain regions while also depending on relevant task parameters. This yields interpretable components that express which variables are shared between different brain regions and when this information is shared across time. To illustrate our method, we reanalyze two datasets recorded during decision-making tasks in rodents and macaques. We find that dSCA provides new insights into the shared computation between different brain areas in these datasets, relating to several different aspects of decision formation.
2020-12-07T20:00:00-08:00 - 2020-12-07T20:10:00-08:00
11 - Spotlight: Minimax Optimal Nonparametric Estimation of Heterogeneous Treatment Effects
Zijun Gao, Yanjun Han
A central goal of causal inference is to detect and estimate the treatment effects of a given treatment or intervention on an outcome variable of interest, where a member known as the heterogeneous treatment effect (HTE) is of growing popularity in recent practical applications such as the personalized medicine. In this paper, we model the HTE as a smooth nonparametric difference between two less smooth baseline functions, and determine the tight statistical limits of the nonparametric HTE estimation as a function of the covariate geometry. In particular, a two-stage nearest-neighbor-based estimator throwing away observations with poor matching quality is near minimax optimal. We also establish the tight dependence on the density ratio without the usual assumption that the covariate densities are bounded away from zero, where a key step is to employ a novel maximal inequality which could be of independent interest.
2020-12-07T20:10:00-08:00 - 2020-12-07T20:20:00-08:00
12 - Spotlight: The Devil is in the Detail: A Framework for Macroscopic Prediction via Microscopic Models
Yingxiang Yang, Negar Kiyavash, Le Song, Niao He
Macroscopic data aggregated from microscopic events are pervasive in machine learning, such as country-level COVID-19 infection statistics based on city-level data. Yet, many existing approaches for predicting macroscopic behavior only use aggregated data, leaving a large amount of fine-grained microscopic information unused. In this paper, we propose a principled optimization framework for macroscopic prediction by fitting microscopic models based on conditional stochastic optimization. The framework leverages both macroscopic and microscopic information, and adapts to individual microscopic models involved in the aggregation. In addition, we propose efficient learning algorithms with convergence guarantees. In our experiments, we show that the proposed learning framework clearly outperforms other plug-in supervised learning approaches in real-world applications, including the prediction of daily infections of COVID-19 and medicare claims.
2020-12-07T20:20:00-08:00 - 2020-12-07T20:30:00-08:00
Q&A: Joint Q&A for Preceeding Spotlights
2020-12-07T20:30:00-08:00 - 2020-12-07T21:00:00-08:00
Break