This is the public, feature-limited version of the conference webpage. After Registration and login please visit the full version.

Workshop: Object Representations for Learning and Reasoning

William Agnew, Rim Assouel, Michael Chang, Antonia Creswell, Eliza Kosoy, Aravind Rajeswaran, Sjoerd van Steenkiste

Fri, Dec 11th @ 16:00 GMT – Sat, Dec 12th @ 03:15 GMT
Abstract: Recent advances in deep reinforcement learning and robotics have enabled agents to achieve superhuman performance on a variety of challenging games and learn complex manipulation tasks. While these results are very promising, several open problems remain. In order to function in real-world environments, learned policies must be both robust to input perturbations and be able to rapidly generalize or adapt to novel situations. Moreover, to collaborate and live with humans in these environments, the goals and actions of embodied agents must be interpretable and compatible with human representations of knowledge. Hence, it is natural to consider how humans so successfully perceive, learn, and plan to build agents that are equally successful at solving real world tasks.
There is much evidence to suggest that objects are a core level of abstraction at which humans perceive and understand the world [8]. Objects have the potential to provide a compact, casual, robust, and generalizable representation of the world. Recently, there have been many advancements in scene representation, allowing scenes to be represented by their constituent objects, rather than at the level of pixels. While these works have shown promising results, there is still a lack of agreement on how to best represent objects, how to learn object representations, and how best to leverage them in agent training.
In this workshop we seek to build a consensus on what object representations should be by engaging with researchers from developmental psychology and by defining concrete tasks and capabilities that agents building on top of such abstract representations of the world should succeed at. We will discuss how object representations may be learned through invited presenters with expertise both in unsupervised and supervised object representation learning methods. Finally, we will host conversations and research on new frontiers in object learning.

Chat

To ask questions please use rocketchat, available only upon registration and login.

Schedule

16:00 – 16:15 GMT
Introduction
William Agnew
16:15 – 17:00 GMT
Keynote: Elizabeth Spelke
Fri, Dec 11th @ 17:02 GMT – Invalid date
Learning Object-Centric Video Models by Contrasting Sets
Fri, Dec 11th @ 17:04 GMT – Invalid date
Structure-Regularized Attention for Deformable Object Representation
Fri, Dec 11th @ 17:06 GMT – Invalid date
Learning Long-term Visual Dynamics with Region Proposal Interaction Networks
Fri, Dec 11th @ 17:08 GMT – Invalid date
Self-Supervised Attention-Aware Reinforcement Learning
Fri, Dec 11th @ 17:10 GMT – Invalid date
Emergence of compositional abstractions in human collaborative assembly
Fri, Dec 11th @ 17:12 GMT – Invalid date
Semantic State Representation for Reinforcement Learning
Fri, Dec 11th @ 17:14 GMT – Invalid date
Odd-One-Out Representation Learning
Fri, Dec 11th @ 17:16 GMT – Invalid date
Word(s) and Object(s): Grounded Language Learning In Information Retrieval
Fri, Dec 11th @ 17:20 GMT – Invalid date
Discrete Predictive Representation for Long-horizon Planning
Fri, Dec 11th @ 17:22 GMT – Invalid date
Dynamic Regions Graph Neural Networks for Spatio-Temporal Reasoning
Fri, Dec 11th @ 17:26 GMT – Invalid date
Dexterous Robotic Grasping with Object-Centric Visual Affordances
Fri, Dec 11th @ 17:28 GMT – Invalid date
Understanding designed objects by program synthesis
Fri, Dec 11th @ 17:29 GMT – Invalid date
Learning Embeddings that Capture Spatial Semantics for Indoor Navigation
17:30 – 18:30 GMT
Poster Session
18:30 – 19:45 GMT
Panel Discussion
Jessica Hamrick
19:45 – 20:25 GMT
Break
20:25 – 20:55 GMT
Invited Talk: Jessica Hamrick
Jessica Hamrick
21:15 – 21:25 GMT
Invited Talk: Irina Higgins
Irina Higgins
21:25 – 21:55 GMT
Invited Talk: Sungjin Ahn
Sungjin Ahn
21:55 – 22:07 GMT
Contributed Talk : A Symmetric and Object-Centric World Model for Stochastic Environments
22:07 – 22:19 GMT
Contributed Talk : OGRE: An Object-based Generalization for Reasoning Environment
22:19 – 22:49 GMT
Invited Talk: Wilka Carvalho
Wilka Carvalho
22:49 – 23:20 GMT
Break
23:20 – 23:50 GMT
Invited Talk: Renée Baillargeon
Fri, Dec 11th @ 23:50 GMT – Sun, Dec 13th @ 00:20 GMT
Invited Talk: Dieter Fox
00:20 – 00:32 GMT
Contributed Talk : Disentangling 3D Prototypical Networks for Few-Shot Concept Learning
00:32 – 00:44 GMT
Contributed Talk : Deep Affordance Foresight: Planning for What Can Be Done Next
00:44 – 00:56 GMT
Contributed talk : Estimating Mass Distribution of Articulated Objects using Non-prehensile Manipulation
00:56 – 02:10 GMT
Panel
Klaus Greff, Josh Tenenbaum
02:10 – 02:15 GMT
Concluding Remarks
02:15 – 03:15 GMT
Poster Session B