Getting Started
Schedule
Tutorials
Main Conference
Invited Talks
Panels
Orals
Papers
Spotlight Posters
Competitions
Datasets and Benchmarks
Journal Track
Creative AI Track
Outstanding Paper Awards
Workshops
Community
Affinity Events
Socials
Mentorship
Town Hall
Careers / Recruiting
Help
Presenters Instructions
Moderators Instructions
FAQ
Helpdesk in RocketChat
Organizers
Login
firstbacksecondback
Search All 2022 Events
13 Results
<<
<
Page 1 of 2
>
>>
Poster
Wed 14:00
Sharp Analysis of Stochastic Optimization under Global Kurdyka-Lojasiewicz Inequality
Ilyas Fatkhullin · Jalal Etesami · Niao He · Negar Kiyavash
Poster
Tue 14:00
EF-BV: A Unified Theory of Error Feedback and Variance Reduction Mechanisms for Biased and Unbiased Compression in Distributed Optimization
Laurent Condat · Kai Yi · Peter Richtarik
Poster
Tue 9:00
SAGDA: Achieving $\mathcal{O}(\epsilon^{-2})$ Communication Complexity in Federated Min-Max Learning
Haibo Yang · Zhuqing Liu · Xin Zhang · Jia Liu
Poster
Thu 14:00
Stochastic Halpern Iteration with Variance Reduction for Stochastic Monotone Inclusions
Xufeng Cai · Chaobing Song · Cristóbal Guzmán · Jelena Diakonikolas
Poster
Thu 14:00
A framework for bilevel optimization that enables stochastic and global variance reduction algorithms
Mathieu Dagréou · Pierre Ablin · Samuel Vaiter · Thomas Moreau
Poster
Thu 14:00
Adaptive Stochastic Variance Reduction for Non-convex Finite-Sum Minimization
Ali Kavis · Stratis Skoulakis · Kimon Antonakopoulos · Leello Tadesse Dadi · Volkan Cevher
Poster
Thu 14:00
Variance Reduced ProxSkip: Algorithm, Theory and Application to Federated Learning
Grigory Malinovsky · Kai Yi · Peter Richtarik
Poster
Tue 14:00
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization
Wei Jiang · Gang Li · Yibo Wang · Lijun Zhang · Tianbao Yang
Poster
Wed 14:00
Coordinate Linear Variance Reduction for Generalized Linear Programming
Chaobing Song · Cheuk Yin Lin · Stephen Wright · Jelena Diakonikolas
Workshop
Variance Reduction in Off-Policy Deep Reinforcement Learning using Spectral Normalization
Payal Bawa · Rafael Oliveira · Fabio Ramos
Workshop
Reducing Communication in Nonconvex Federated Learning with a Novel Single-Loop Variance Reduction Method
Kazusato Oko · Shunta Akiyama · Tomoya Murata · Taiji Suzuki
Poster
Tue 9:00
Gradient Estimation with Discrete Stein Operators
Jiaxin Shi · Yuhao Zhou · Jessica Hwang · Michalis Titsias · Lester Mackey
NeurIPS uses cookies to remember that you are logged in. By using our websites, you agree to the placement of cookies.
Our Privacy Policy »
Accept Cookies