Generalised Bayesian Filtering via Sequential Monte Carlo
Ayman Boustati, Omer Deniz Akyildiz, Theo Damoulas, Adam Johansen
Poster Session 6 (more posters)
on 2020-12-10T09:00:00-08:00 - 2020-12-10T11:00:00-08:00
GatherTown: Probabilistic Methods ( Town B0 - Spot C0 )
on 2020-12-10T09:00:00-08:00 - 2020-12-10T11:00:00-08:00
GatherTown: Probabilistic Methods ( Town B0 - Spot C0 )
Join GatherTown
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Toggle Abstract Paper (in Proceedings / .pdf)
Abstract: We introduce a framework for inference in general state-space hidden Markov models (HMMs) under likelihood misspecification. In particular, we leverage the loss-theoretic perspective of Generalized Bayesian Inference (GBI) to define generalised filtering recursions in HMMs, that can tackle the problem of inference under model misspecification. In doing so, we arrive at principled procedures for robust inference against observation contamination by utilising the $\beta$-divergence. Operationalising the proposed framework is made possible via sequential Monte Carlo methods (SMC), where the standard particle methods, and their associated convergence results, are readily adapted to the new setting. We demonstrate our approach to object tracking and Gaussian process regression problems, and observe improved performance over standard filtering algorithms.