Overfitting Can Be Harmless for Basis Pursuit, But Only to a Degree

Peizhong Ju, Xiaojun Lin, Jia Liu

Spotlight presentation: Orals & Spotlights Track 30: Optimization/Theory
on Thu, Dec 10th, 2020 @ 16:00 – 16:10 GMT
Poster Session 6 (more posters)
on Thu, Dec 10th, 2020 @ 17:00 – 19:00 GMT
GatherTown: Theory ( Town D0 - Spot C1 )
Join GatherTown
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Abstract: Recently, there have been significant interests in studying the so-called "double-descent" of the generalization error of linear regression models under the overparameterized and overfitting regime, with the hope that such analysis may provide the first step towards understanding why overparameterized deep neural networks (DNN) still generalize well. However, to date most of these studies focused on the min L2-norm solution that overfits the data. In contrast, in this paper we study the overfitting solution that minimizes the L1-norm, which is known as Basis Pursuit (BP) in the compressed sensing literature. Under a sparse true linear regression model with p i.i.d. Gaussian features, we show that for a large range of p up to a limit that grows exponentially with the number of samples n, with high probability the model error of BP is upper bounded by a value that decreases with p. To the best of our knowledge, this is the first analytical result in the literature establishing the double-descent of overfitting BP for finite n and p. Further, our results reveal significant differences between the double-descent of BP and min L2-norm solutions. Specifically, the double-descent upper-bound of BP is independent of the signal strength, and for high SNR and sparse models the descent-floor of BP can be much lower and wider than that of min L2-norm solutions.

Preview Video and Chat

Chat is not available.