Manifold structure in graph embeddings
Patrick Rubin-Delanchy
Spotlight presentation: Orals & Spotlights Track 05: Clustering/Ranking
on 2020-12-08T07:30:00-08:00 - 2020-12-08T07:40:00-08:00
on 2020-12-08T07:30:00-08:00 - 2020-12-08T07:40:00-08:00
Poster Session 2 (more posters)
on 2020-12-08T09:00:00-08:00 - 2020-12-08T11:00:00-08:00
GatherTown: Deep learning and applications ( Town C0 - Spot D1 )
on 2020-12-08T09:00:00-08:00 - 2020-12-08T11:00:00-08:00
GatherTown: Deep learning and applications ( Town C0 - Spot D1 )
Join GatherTown
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Toggle Abstract Paper (in Proceedings / .pdf)
Abstract: Statistical analysis of a graph often starts with embedding, the process of representing its nodes as points in space. How to choose the embedding dimension is a nuanced decision in practice, but in theory a notion of true dimension is often available. In spectral embedding, this dimension may be very high. However, this paper shows that existing random graph models, including graphon and other latent position models, predict the data should live near a much lower-dimensional set. One may therefore circumvent the curse of dimensionality by employing methods which exploit hidden manifold structure.