Supermasks in Superposition
Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Ani Kembhavi, Mohammad Rastegari, Jason Yosinski, Ali Farhadi
Poster Session 5 (more posters)
on 2020-12-09T21:00:00-08:00 - 2020-12-09T23:00:00-08:00
GatherTown: Learning with limited supervision (meta-learning, continual learning, etc.) ( Town A1 - Spot B1 )
on 2020-12-09T21:00:00-08:00 - 2020-12-09T23:00:00-08:00
GatherTown: Learning with limited supervision (meta-learning, continual learning, etc.) ( Town A1 - Spot B1 )
Join GatherTown
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Toggle Abstract Paper (in Proceedings / .pdf)
Abstract: We present the Supermasks in Superposition (SupSup) model, capable of sequentially learning thousands of tasks without catastrophic forgetting. Our approach uses a randomly initialized, fixed base network and for each task finds a subnetwork (supermask) that achieves good performance. If task identity is given at test time, the correct subnetwork can be retrieved with minimal memory usage. If not provided, SupSup can infer the task using gradient-based optimization to find a linear superposition of learned supermasks which minimizes the output entropy. In practice we find that a single gradient step is often sufficient to identify the correct mask, even among 2500 tasks. We also showcase two promising extensions. First, SupSup models can be trained entirely without task identity information, as they may detect when they are uncertain about new data and allocate an additional supermask for the new training distribution. Finally the entire, growing set of supermasks can be stored in a constant-sized reservoir by implicitly storing them as attractors in a fixed-sized Hopfield network.