Calibrated Reliable Regression using Maximum Mean Discrepancy
Peng Cui, Wenbo Hu, Jun Zhu
Poster Session 5 (more posters)
on 2020-12-09T21:00:00-08:00 - 2020-12-09T23:00:00-08:00
GatherTown: Causality & Probabilistic methods & neuroscience ( Town B0 - Spot A2 )
on 2020-12-09T21:00:00-08:00 - 2020-12-09T23:00:00-08:00
GatherTown: Causality & Probabilistic methods & neuroscience ( Town B0 - Spot A2 )
Join GatherTown
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Toggle Abstract Paper (in Proceedings / .pdf)
Abstract: Accurate quantification of uncertainty is crucial for real-world applications of machine learning. However, modern deep neural networks still produce unreliable predictive uncertainty, often yielding over-confident predictions. In this paper, we are concerned with getting well-calibrated predictions in regression tasks. We propose the calibrated regression method using the maximum mean discrepancy by minimizing the kernel embedding measure. Theoretically, the calibration error of our method asymptotically converges to zero when the sample size is large enough. Experiments on non-trivial real datasets show that our method can produce well-calibrated and sharp prediction intervals, which outperforms the related state-of-the-art methods.