Hypersolvers: Toward Fast Continuous-Depth Models

Michael Poli, Stefano Massaroli, Atsushi Yamashita, Hajime Asama, Jinkyoo Park

Poster Session 2 (more posters)
on 2020-12-08T09:00:00-08:00 - 2020-12-08T11:00:00-08:00
GatherTown: Algorithms, applications, and theory ( Town E3 - Spot C2 )
Join GatherTown
Only iff poster is crowded, join Zoom . Authors have to start the Zoom call from their Profile page / Presentation History.
Abstract: The infinite-depth paradigm pioneered by Neural ODEs has launched a renaissance in the search for novel dynamical system-inspired deep learning primitives; however, their utilization in problems of non-trivial size has often proved impossible due to poor computational scalability. This work paves the way for scalable Neural ODEs with time-to-prediction comparable to traditional discrete networks. We introduce hypersolvers, neural networks designed to solve ODEs with low overhead and theoretical guarantees on accuracy. The synergistic combination of hypersolvers and Neural ODEs allows for cheap inference and unlocks a new frontier for practical application of continuous-depth models. Experimental evaluations on standard benchmarks, such as sampling for continuous normalizing flows, reveal consistent pareto efficiency over classical numerical methods.

Preview Video and Chat

Chat is not available.