Orals & Spotlights Track 27: Unsupervised/Probabilistic

Each Oral includes Q&A
Spotlights have joint Q&As

Time

2020-12-10T06:00:00-08:00 - 2020-12-10T09:00:00-08:00

Session chairs

Marina Meila, Kun Zhang

Video

Chat

Chat is not available.

Schedule

2020-12-10T06:00:00-08:00 - 2020-12-10T06:15:00-08:00
1 - Oral: Contrastive learning of global and local features for medical image segmentation with limited annotations
Krishna Chaitanya, Ertunc Erdil, Neerav Karani, Ender Konukoglu
A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8\% of benchmark performance using only two labeled MRI volumes for training. The code is made public at https://github.com/krishnabits001/domain\_specific\_cl.
2020-12-10T06:15:00-08:00 - 2020-12-10T06:30:00-08:00
2 - Oral: Bootstrap Your Own Latent - A New Approach to Self-Supervised Learning
Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, koray kavukcuoglu, Remi Munos, Michal Valko
We introduce Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image representation learning. BYOL relies on two neural networks, referred to as online and target networks, that interact and learn from each other. From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view. At the same time, we update the target network with a slow-moving average of the online network. While state-of-the art methods intrinsically rely on negative pairs, BYOL achieves a new state of the art without them. BYOL reaches 74.3% top-1 classification accuracy on ImageNet using the standard linear evaluation protocol with a standard ResNet-50 architecture and 79.6% with a larger ResNet. We also show that BYOL performs on par or better than the current state of the art on both transfer and semi-supervised benchmarks.
2020-12-10T06:30:00-08:00 - 2020-12-10T06:45:00-08:00
3 - Oral: SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
Didrik Nielsen, Priyank Jaini, Emiel Hoogeboom, Ole Winther, Max Welling
Normalizing flows and variational autoencoders are powerful generative models that can represent complicated density functions. However, they both impose constraints on the models: Normalizing flows use bijective transformations to model densities whereas VAEs learn stochastic transformations that are non-invertible and thus typically do not provide tractable estimates of the marginal likelihood. In this paper, we introduce SurVAE Flows: A modular framework of composable transformations that encompasses VAEs and normalizing flows. SurVAE Flows bridge the gap between normalizing flows and VAEs with surjective transformations, wherein the transformations are deterministic in one direction -- thereby allowing exact likelihood computation, and stochastic in the reverse direction -- hence providing a lower bound on the corresponding likelihood. We show that several recently proposed methods, including dequantization and augmented normalizing flows, can be expressed as SurVAE Flows. Finally, we introduce common operations such as the max value, the absolute value, sorting and stochastic permutation as composable layers in SurVAE Flows.
2020-12-10T06:45:00-08:00 - 2020-12-10T07:00:00-08:00
Break
2020-12-10T07:00:00-08:00 - 2020-12-10T07:10:00-08:00
5 - Spotlight: Self-Supervised Relational Reasoning for Representation Learning
Massimiliano Patacchiola, Amos Storkey
In self-supervised learning, a system is tasked with achieving a surrogate objective by defining alternative targets on a set of unlabeled data. The aim is to build useful representations that can be used in downstream tasks, without costly manual annotation. In this work, we propose a novel self-supervised formulation of relational reasoning that allows a learner to bootstrap a signal from information implicit in unlabeled data. Training a relation head to discriminate how entities relate to themselves (intra-reasoning) and other entities (inter-reasoning), results in rich and descriptive representations in the underlying neural network backbone, which can be used in downstream tasks such as classification and image retrieval. We evaluate the proposed method following a rigorous experimental procedure, using standard datasets, protocols, and backbones. Self-supervised relational reasoning outperforms the best competitor in all conditions by an average 14% in accuracy, and the most recent state-of-the-art model by 3%. We link the effectiveness of the method to the maximization of a Bernoulli log-likelihood, which can be considered as a proxy for maximizing the mutual information, resulting in a more efficient objective with respect to the commonly used contrastive losses.
2020-12-10T07:10:00-08:00 - 2020-12-10T07:20:00-08:00
6 - Spotlight: Object-Centric Learning with Slot Attention
Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, Thomas Kipf
Learning object-centric representations of complex scenes is a promising step towards enabling efficient abstract reasoning from low-level perceptual features. Yet, most deep learning approaches learn distributed representations that do not capture the compositional properties of natural scenes. In this paper, we present the Slot Attention module, an architectural component that interfaces with perceptual representations such as the output of a convolutional neural network and produces a set of task-dependent abstract representations which we call slots. These slots are exchangeable and can bind to any object in the input by specializing through a competitive procedure over multiple rounds of attention. We empirically demonstrate that Slot Attention can extract object-centric representations that enable generalization to unseen compositions when trained on unsupervised object discovery and supervised property prediction tasks.
2020-12-10T07:20:00-08:00 - 2020-12-10T07:30:00-08:00
7 - Spotlight: Telescoping Density-Ratio Estimation
Benjamin Rhodes, Kai Xu, Michael U. Gutmann
Density-ratio estimation via classification is a cornerstone of unsupervised learning. It has provided the foundation for state-of-the-art methods in representation learning and generative modelling, with the number of use-cases continuing to proliferate. However, it suffers from a critical limitation: it fails to accurately estimate ratios p/q for which the two densities differ significantly. Empirically, we find this occurs whenever the KL divergence between p and q exceeds tens of nats. To resolve this limitation, we introduce a new framework, telescoping density-ratio estimation (TRE), that enables the estimation of ratios between highly dissimilar densities in high-dimensional spaces. Our experiments demonstrate that TRE can yield substantial improvements over existing single-ratio methods for mutual information estimation, representation learning and energy-based modelling.
2020-12-10T07:30:00-08:00 - 2020-12-10T07:40:00-08:00
8 - Spotlight: Probabilistic Inference with Algebraic Constraints: Theoretical Limits and Practical Approximations
Zhe Zeng, Paolo Morettin, Fanqi Yan, Antonio Vergari, Guy Van den Broeck
Weighted model integration (WMI) is a framework to perform advanced probabilistic inference on hybrid domains, i.e., on distributions over mixed continuous-discrete random variables and in presence of complex logical and arithmetic constraints. In this work, we advance the WMI framework on both the theoretical and algorithmic side. First, we exactly trace the boundaries of tractability for WMI inference by proving that to be amenable to exact and efficient inference a WMI problem has to posses a tree-shaped structure with logarithmic diameter. While this result deepens our theoretical understanding of WMI it hinders the practical applicability of exact WMI solvers to real-world problems. To overcome this, we propose the first approximate WMI solver that does not resort to sampling, but performs exact inference on one approximate models. Our solution performs message passing in a relaxed problem structure iteratively to recover certain lost dependencies and, as our experiments suggest, is competitive with other SOTA WMI solvers.
2020-12-10T07:40:00-08:00 - 2020-12-10T07:50:00-08:00
Q&A: Joint Q&A for Preceeding Spotlights
2020-12-10T07:50:00-08:00 - 2020-12-10T08:00:00-08:00
10 - Spotlight: Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks
Alexander Shekhovtsov, Viktor Yanush, Boris Flach
In neural networks with binary activations and or binary weights the training by gradient descent is complicated as the model has piecewise constant response. We consider stochastic binary networks, obtained by adding noises in front of activations. The expected model response becomes a smooth function of parameters, its gradient is well defined but it is challenging to estimate it accurately. We propose a new method for this estimation problem combining sampling and analytic approximation steps. The method has a significantly reduced variance at the price of a small bias which gives a very practical tradeoff in comparison with existing unbiased and biased estimators. We further show that one extra linearization step leads to a deep straight-through estimator previously known only as an ad-hoc heuristic. We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models with both proposed methods.
2020-12-10T08:00:00-08:00 - 2020-12-10T08:10:00-08:00
11 - Spotlight: Stochastic Normalizing Flows
Hao Wu, Jonas Köhler, Frank Noe
The sampling of probability distributions specified up to a normalization constant is an important problem in both machine learning and statistical mechanics. While classical stochastic sampling methods such as Markov Chain Monte Carlo (MCMC) or Langevin Dynamics (LD) can suffer from slow mixing times there is a growing interest in using normalizing flows in order to learn the transformation of a simple prior distribution to the given target distribution. Here we propose a generalized and combined approach to sample target densities: Stochastic Normalizing Flows (SNF) – an arbitrary sequence of deterministic invertible functions and stochastic sampling blocks. We show that stochasticity overcomes expressivity limitations of normalizing flows resulting from the invertibility constraint, whereas trainable transformations between sampling steps improve efficiency of pure MCMC/LD along the flow. By invoking ideas from non-equilibrium statistical mechanics we derive an efficient training procedure by which both the sampler's and the flow's parameters can be optimized end-to-end, and by which we can compute exact importance weights without having to marginalize out the randomness of the stochastic blocks. We illustrate the representational power, sampling efficiency and asymptotic correctness of SNFs on several benchmarks including applications to sampling molecular systems in equilibrium.
2020-12-10T08:10:00-08:00 - 2020-12-10T08:20:00-08:00
12 - Spotlight: Generative Neurosymbolic Machines
Jindong Jiang, Sungjin Ahn
Reconciling symbolic and distributed representations is a crucial challenge that can potentially resolve the limitations of current deep learning. Remarkable advances in this direction have been achieved recently via generative object-centric representation models. While learning a recognition model that infers object-centric symbolic representations like bounding boxes from raw images in an unsupervised way, no such model can provide another important ability of a generative model, i.e., generating (sampling) according to the structure of learned world density. In this paper, we propose Generative Neurosymbolic Machines, a generative model that combines the benefits of distributed and symbolic representations to support both structured representations of symbolic components and density-based generation. These two crucial properties are achieved by a two-layer latent hierarchy with the global distributed latent for flexible density modeling and the structured symbolic latent map. To increase the model flexibility in this hierarchical structure, we also propose the StructDRAW prior. In experiments, we show that the proposed model significantly outperforms the previous structured representation models as well as the state-of-the-art non-structured generative models in terms of both structure accuracy and image generation quality.
2020-12-10T08:20:00-08:00 - 2020-12-10T08:30:00-08:00
13 - Spotlight: DAGs with No Fears: A Closer Look at Continuous Optimization for Learning Bayesian Networks
Dennis Wei, Tian Gao, Yue Yu
This paper re-examines a continuous optimization framework dubbed NOTEARS for learning Bayesian networks. We first generalize existing algebraic characterizations of acyclicity to a class of matrix polynomials. Next, focusing on a one-parameter-per-edge setting, it is shown that the Karush-Kuhn-Tucker (KKT) optimality conditions for the NOTEARS formulation cannot be satisfied except in a trivial case, which explains a behavior of the associated algorithm. We then derive the KKT conditions for an equivalent reformulation, show that they are indeed necessary, and relate them to explicit constraints that certain edges be absent from the graph. If the score function is convex, these KKT conditions are also sufficient for local minimality despite the non-convexity of the constraint. Informed by the KKT conditions, a local search post-processing algorithm is proposed and shown to substantially and universally improve the structural Hamming distance of all tested algorithms, typically by a factor of 2 or more. Some combinations with local search are both more accurate and more efficient than the original NOTEARS.
2020-12-10T08:30:00-08:00 - 2020-12-10T08:40:00-08:00
Q&A: Joint Q&A for Preceeding Spotlights
2020-12-10T08:40:00-08:00 - 2020-12-10T09:00:00-08:00
Break