Skip to yearly menu bar Skip to main content


Poster

Shared Segmentation of Natural Scenes Using Dependent Pitman-Yor Processes

Erik Sudderth · Michael Jordan


Abstract:

We develop a statistical framework for the simultaneous, unsupervised segmentation and discovery of visual object categories from image databases. Examining a large set of manually segmented scenes, we use chi--square tests to show that object frequencies and segment sizes both follow power law distributions, which are well modeled by the Pitman--Yor (PY) process. This nonparametric prior distribution leads to learning algorithms which discover an unknown set of objects, and segmentation methods which automatically adapt their resolution to each image. Generalizing previous applications of PY processes, we use Gaussian processes to discover spatially contiguous segments which respect image boundaries. Using a novel family of variational approximations, our approach produces segmentations which compare favorably to state--of--the--art methods, while simultaneously discovering categories shared among natural scenes.

Live content is unavailable. Log in and register to view live content