Skip to yearly menu bar Skip to main content


Session

Oral session 7: Complex Dynamical Systems: Modeling and Estimation

David Fleet

Abstract:
Chat is not available.

Wed 10 Dec. 10:30 - 10:50 PST

Modeling the effects of memory on human online sentence processing with particle filters

Roger Levy · Florencia Reali · Tom Griffiths

Language comprehension in humans is significantly constrained by memory, yet rapid, highly incremental, and capable of utilizing a wide range of contextual information to resolve ambiguity and form expectations about future input. In contrast, most of the leading psycholinguistic models and fielded algorithms for natural language parsing are non-incremental, have run time superlinear in input length, and/or enforce structural locality constraints on probabilistic dependencies between events. We present a new limited-memory model of sentence comprehension which involves an adaptation of the particle filter, a sequential Monte Carlo method, to the problem of incremental parsing. We show that this model can reproduce classic results in online sentence comprehension, and that it naturally provides the first rational account of an outstanding problem in psycholinguistics, in which the preferred alternative in a syntactic ambiguity seems to grow more attractive over time even in the absence of strong disambiguating information.

Wed 10 Dec. 10:50 - 11:10 PST

On Computational Power and the Order-Chaos Phase Transition in Reservoir Computing

Benjamin Schrauwen · Lars Buesing · Robert Legenstein

Randomly connected recurrent neural circuits have proven to be very powerful models for online computations when a trained memoryless readout function is appended. Such Reservoir Computing (RC) systems are commonly used in two flavors: with analog or binary (spiking) neurons in the recurrent circuits. Previous work showed a fundamental difference between these two incarnations of the RC idea. The performance of a RC system build from binary neurons seems to depend strongly on the network connectivity structure. In networks of analog neurons such dependency has not been observed. In this article we investigate this apparent dichotomy in terms of the in-degree of the circuit nodes. Our analyses based amongst others on the Lyapunov exponent reveal that the phase transition between ordered and chaotic network behavior of binary circuits qualitatively differs from the one in analog circuits. This explains the observed decreased computational performance of binary circuits of high node in-degree. Furthermore, a novel mean-field predictor for computational performance is introduced and shown to accurately predict the numerically obtained results.

Wed 10 Dec. 11:10 - 11:30 PST

Nonrigid Structure from Motion in Trajectory Space

Ijaz Akhter · Yaser Sheikh · Sohaib Khan · Takeo Kanade

Existing approaches to nonrigid structure from motion assume that the instantaneous 3D shape of a deforming object is a linear combination of basis shapes, which have to be estimated anew for each video sequence. In contrast, we propose that the evolving 3D structure be described by a linear combination of basis trajectories. The principal advantage of this lateral approach is that we do not need to estimate any basis vectors during computation. Instead, we show that generic bases over trajectories, such as the Discrete Cosine Transform (DCT) bases, can be used to effectively describe most real motions. This results in a significant reduction in unknowns, and corresponding stability, in estimation. We report empirical performance, quantitatively using motion capture data and qualitatively on several video sequences exhibiting nonrigid motions including piece-wise rigid motion, articulated motion, partially nonrigid motion (such as a facial expression), and highly nonrigid motion (such as a person dancing).

Wed 10 Dec. 11:30 - 11:50 PST

Model selection and velocity estimation using novel priors for motion patterns

Alan Yuille · Shuang Wu · HongJing Lu

Psychophysical experiments show that humans are better at perceiving rotation and expansion than translation. These findings are inconsistent with standard models of motion integration which predict best performance for translation [6]. To explain this discrepancy, our theory formulates motion perception at two levels of inference: we first perform model selection between the competing models (e.g. translation, rotation, and expansion) and then estimate the velocity using the selected model. We define novel prior models for smooth rotation and expansion using techniques similar to those in the slow-and-smooth model [17] (e.g. Green functions of differential operators). The theory gives good agreement with the trends observed in human experiments.