Skip to yearly menu bar Skip to main content


Poster

Free energy score space

Alessandro Perina · Marco Cristani · Umberto Castellani · Vittorio Murino · Nebojsa Jojic


Abstract:

Score functions induced by generative models extract fixed-dimension feature vectors from different-length data observations by subsuming the process of data generation, projecting them in highly informative spaces called score spaces. In this way, standard discriminative classifiers are proved to achieve higher performances than a solely generative or discriminative approach. In this paper, we present a novel score space that exploits the free energy associated to a generative model through a score function. This function aims at capturing both the uncertainty of the model learning and ``local compliance of data observations with respect to the generative process. Theoretical justifications and convincing comparative classification results on various generative models prove the goodness of the proposed strategy.

Live content is unavailable. Log in and register to view live content