Session
Oral Session 3: Deep Learning and Network Models
Aaron Courville
Deep Learning with Multiplicative Interactions
Geoffrey E Hinton
Deep networks can be learned efficiently from unlabeled data. The layers of representation are learned one at a time using a simple learning module that has only one layer of latent variables. The values of the latent variables of one module form the data for training the next module. The most commonly used modules are Restricted Boltzmann Machines or autoencoders with a sparsity penalty on the hidden activities. Although deep networks have been quite successful for tasks such as object recognition, information retrieval, and modeling motion capture data, the simple learning modules do not have multiplicative interactions which are very useful for some types of data.
The talk will show how a third-order energy function can be factorized to yield a simple learning module that retains advantageous properties of a Restricted Boltzmann Machine such as very simple exact inference and a very simple learning rule based on pair-wise statistics. The new module contains multiplicative interactions that are useful for a variety of unsupervised learning tasks. Researchers at the University of Toronto have been using this type of module to extract oriented energy from image patches and dense flow fields from image sequences. The new module can also be used to allow the style of a motion to blend autoregressive models of motion capture data. Finally, the new module can be used to combine an eye-position with a feature-vector to allow a system that has a variable resolution retina to integrate information about shape over many fixations.
Discriminative Network Models of Schizophrenia
Guillermo Cecchi · Irina Rish · Benjamin Thyreau · Bertrand Thirion · Marion Plaze · Jean-Luc Martinot · Marie Laure Paillere-Martinot · Jean-Baptiste Poline
Schizophrenia is a complex psychiatric disorder that has eluded a characterization in terms of local abnormalities of brain activity, and is hypothesized to affect the collective, "emergent'' working of the brain. We propose a novel data-driven approach to capture emergent features using functional brain networks [Eguiluzet al] extracted from fMRI data, and demonstrate its advantage over traditional region-of-interest (ROI) and local, task-specific linear activation analyzes. Our results suggest that schizophrenia is indeed associated with disruption of global, emergent brain properties related to its functioning as a network, which cannot be explained by alteration of local activation patterns. Moreover, further exploitation of interactions by sparse Markov Random Field classifiers shows clear gain over linear methods, such as Gaussian Naive Bayes and SVM, allowing to reach 86% accuracy (over 50% baseline - random guess), which is quite remarkable given that it is based on a single fMRI experiment using a simple auditory task.