Session
Oral Session 4: Cognitive Science and EEG Analysis
Charles Kemp
Differential Use of Implicit Negative Evidence in Generative and Discriminative Language Learning
Anne Hsu · Tom Griffiths
A classic debate in cognitive science revolves around understanding how children learn complex linguistic rules, such as those governing restrictions on verb alternations, without negative evidence. Traditionally, formal learnability arguments have been used to claim that such learning is impossible without the aid of innate language-specific knowledge. However, recently, researchers have shown that statistical models are capable of learning complex rules from only positive evidence. These two kinds of learnability analyses differ in their assumptions about the role of the distribution from which linguistic input is generated. The former analyses assume that learners seek to identify grammatical sentences in a way that is robust to the distribution from which the sentences are generated, analogous to discriminative approaches in machine learning. The latter assume that learners are trying to estimate a generative model, with sentences being sampled from that model. We show that these two learning approaches differ in their use of implicit negative evidence -- the absence of a sentence -- when learning verb alternations, and demonstrate that human learners can produce results consistent with the predictions of both approaches, depending on the context in which the learning problem is presented.
Explaining human multiple object tracking as resource-constrained approximate inference in a dynamic probabilistic model
Edward Vul · Michael C Frank · George Alvarez · Josh Tenenbaum
Multiple object tracking is a task commonly used to investigate the architecture of human visual attention. Human participants show a distinctive pattern of successes and failures in tracking experiments that is often attributed to limits on an object system, a tracking module, or other specialized cognitive structures. Here we use a computational analysis of the task of object tracking to ask which human failures arise from cognitive limitations and which are consequences of inevitable perceptual uncertainty in the tracking task. We find that many human performance phenomena, measured through novel behavioral experiments, are naturally produced by the operation of our ideal observer model (a Rao-Blackwelized particle filter). The tradeoff between the speed and number of objects being tracked, however, can only arise from the allocation of a flexible cognitive resource, which can be formalized as either memory or attention.
Optimizing Multi-Class Spatio-Spectral Filters via Bayes Error Estimation for EEG Classification
Wenming Zheng · Zhouchen Lin
The method of common spatio-spectral patterns (CSSPs) is an extension of common spatial patterns (CSPs) by utilizing the technique of delay embedding to alleviate the adverse effects of noises and artifacts on the electroencephalogram (EEG) classification. Although the CSSPs method has shown to be more powerful than the CSPs method in the EEG classification, this method is only suitable for two-class EEG classification problems. In this paper, we generalize the two-class CSSPs method to multi-class cases. To this end, we first develop a novel theory of multi-class Bayes error estimation and then present the multi-class CSSPs (MCSSPs) method based on this Bayes error theoretical framework. By minimizing the estimated closed-form Bayes error, we obtain the optimal spatio-spectral filters of MCSSPs. To demonstrate the effectiveness of the proposed method, we conduct extensive experiments on the data set of BCI competition 2005. The experimental results show that our method significantly outperforms the previous multi-class CSPs (MCSPs) methods in the EEG classification.