Skip to yearly menu bar Skip to main content


Spotlight

Perceptual Multistability as Markov Chain Monte Carlo Inference

Samuel J Gershman · Edward Vul · Josh Tenenbaum

[ ] [ Visit Spotlights ]

Abstract:

While many perceptual and cognitive phenomena are well described in terms of Bayesian inference, the necessary computations are intractable at the scale of real-world tasks, and it remains unclear how the human mind approximates Bayesian inference algorithmically. We explore the proposal that for some tasks, humans use a form of Markov Chain Monte Carlo to approximate the posterior distribution over hidden variables. As a case study, we show how several phenomena of perceptual multistability can be explained as MCMC inference in simple graphical models for low-level vision.

Chat is not available.