Poster
A Primal-Dual Message-Passing Algorithm for Approximated Large Scale Structured Prediction
Tamir Hazan · Raquel Urtasun
In this paper we propose an approximated learning framework for large scale graphical models and derive message passing algorithms for learning their parameters efficiently. We first relate CRFs and structured SVMs and show that in the CRF's primal a variant of the log-partition function, known as soft-max, smoothly approximates the hinge loss function of structured SVMs. We then propose an intuitive approximation for structured prediction problems using Fenchel duality based on a local entropy approximation that computes the exact gradients of the approximated problem and is guaranteed to converge. Unlike existing approaches, this allow us to learn graphical models with cycles and very large number of parameters efficiently. We demonstrate the effectiveness of our approach in an image denoising task. This task was previously solved by sharing parameters across cliques. In contrast, our algorithm is able to efficiently learn large number of parameters resulting in orders of magnitude better prediction.
Live content is unavailable. Log in and register to view live content