Poster
Online Learning in The Manifold of Low-Rank Matrices
Uri Shalit · Daphna Weinshall · Gal Chechik
When learning models that are represented in matrix forms, enforcing a low-rank constraint can dramatically improve the memory and run time complexity, while providing a natural regularization of the model. However, naive approaches for minimizing functions over the set of low-rank matrices are either prohibitively time consuming (repeated singular value decomposition of the matrix) or numerically unstable (optimizing a factored representation of the low rank matrix). We build on recent advances in optimization over manifolds, and describe an iterative online learning procedure, consisting of a gradient step, followed by a second-order retraction back to the manifold. While the ideal retraction is hard to compute, and so is the projection operator that approximates it, we describe another second-order retraction that can be computed efficiently, with run time and memory complexity of O((n+m)k) for a rank-k matrix of dimension m x n, given rank one gradients. We use this algorithm, LORETA, to learn a matrix-form similarity measure over pairs of documents represented as high dimensional vectors. LORETA improves the mean average precision over a passive- aggressive approach in a factorized model, and also improves over a full model trained over pre-selected features using the same memory requirements. LORETA also showed consistent improvement over standard methods in a large (1600 classes) multi-label image classification task.
Live content is unavailable. Log in and register to view live content