Skip to yearly menu bar Skip to main content


Poster

A Bayesian Approach to Concept Drift

Stephen H Bach · Mark Maloof


Abstract:

To cope with concept drift, we placed a probability distribution over the location of the most-recent drift point. We used Bayesian model comparison to update this distribution from the predictions of models trained on blocks of consecutive observations and pruned potential drift points with low probability. We compare our approach to a non-probabilistic method for drift and a probabilistic method for change-point detection. In our experiments, our approach generally yielded improved accuracy and/or speed over these other methods.

Live content is unavailable. Log in and register to view live content