Skip to yearly menu bar Skip to main content


Poster

Generalised Coupled Tensor Factorisation

Kenan Y Yılmaz · Taylan Cemgil · Umut Simsekli


Abstract: We derive algorithms for generalised tensor factorisation (GTF) by building upon the well-established theory of Generalised Linear Models. Our algorithms are general in the sense that we can compute arbitrary factorisations in a message passing framework, derived for a broad class of exponential family distributions including special cases such as Tweedie's distributions corresponding to $\beta$-divergences. By bounding the step size of the Fisher Scoring iteration of the GLM, we obtain general updates for real data and multiplicative updates for non-negative data. The GTF framework is, then extended easily to address the problems when multiple observed tensors are factorised simultaneously. We illustrate our coupled factorisation approach on synthetic data as well as on a musical audio restoration problem.

Live content is unavailable. Log in and register to view live content