Skip to yearly menu bar Skip to main content


Poster

Learning Invariant Representations of Molecules for Atomization Energy Prediction

Grégoire Montavon · Katja Hansen · Siamac Fazli · Matthias Rupp · Franziska Biegler · Andreas Ziehe · Alexandre Tkatchenko · Anatole von Lilienfeld · Klaus-Robert Müller

Harrah’s Special Events Center 2nd Floor

Abstract:

The accurate prediction of molecular energetics in chemical compound space is a crucial ingredient for rational compound design. The inherently graph-like, non-vectorial nature of molecular data gives rise to a unique and difficult machine learning problem. In this paper, we adopt a learning-from-scratch approach where quantum-mechanical molecular energies are predicted directly from the raw molecular geometry. The study suggests a benefit from setting flexible priors and enforcing invariance stochastically rather than structurally. Our results improve the state-of-the-art by a factor of almost three, bringing statistical methods one step closer to the holy grail of ''chemical accuracy''.

Live content is unavailable. Log in and register to view live content