Poster
On the Use of Non-Stationary Policies for Stationary Infinite-Horizon Markov Decision Processes
Bruno Scherrer · Boris Lesner
Harrah’s Special Events Center 2nd Floor
[
Abstract
]
Abstract:
We consider infinite-horizon stationary γ-discounted Markov Decision Processes, for which it is known that there exists a stationary optimal policy. Using Value and Policy Iteration with some error ϵ at each iteration, it is well-known that one can compute stationary policies that are \frac{2\gamma{(1-\gamma)^2}\epsilon-optimal. After arguing that this guarantee is tight, we develop variations of Value and Policy Iteration for computing non-stationary policies that can be up to 2γ1−γϵ-optimal, which constitutes a significant improvement in the usual situation when γ is close to 1. Surprisingly, this shows that the problem of computing near-optimal non-stationary policies'' is much simpler than that of computing near-optimal stationary policies''.
Live content is unavailable. Log in and register to view live content