Poster
Active Learning of Model Evidence Using Bayesian Quadrature
Michael A Osborne · David Duvenaud · Roman Garnett · Carl Edward Rasmussen · Stephen J Roberts · Zoubin Ghahramani
Harrah’s Special Events Center 2nd Floor
Numerical integration is an key component of many problems in scientific computing, statistical modelling, and machine learning. Bayesian Quadrature is a model-based method for numerical integration which, relative to standard Monte Carlo methods, offers increased sample efficiency and a more robust estimate of the uncertainty in the estimated integral. We propose a novel Bayesian Quadrature approach for numerical integration when the integrand is non-negative, such as the case of computing the marginal likelihood, predictive distribution, or normalising constant of a probabilistic model. Our approach approximately marginalises the quadrature model's hyperparameters in closed form, and introduces an active learning scheme to optimally select function evaluations, as opposed to using Monte Carlo samples. We demonstrate our method on both a number of synthetic benchmarks and a real scientific problem from astronomy.
Live content is unavailable. Log in and register to view live content