Skip to yearly menu bar Skip to main content



Orals
Cameron Musco · Christopher Musco

[ Room 210 A ]

Since being analyzed by Rokhlin, Szlam, and Tygert and popularized by Halko, Martinsson, and Tropp, randomized Simultaneous Power Iteration has become the method of choice for approximate singular value decomposition. It is more accurate than simpler sketching algorithms, yet still converges quickly for any matrix, independently of singular value gaps. After ~O(1/epsilon) iterations, it gives a low-rank approximation within (1+epsilon) of optimal for spectral norm error.We give the first provable runtime improvement on Simultaneous Iteration: a randomized block Krylov method, closely related to the classic Block Lanczos algorithm, gives the same guarantees in just ~O(1/sqrt(epsilon)) iterations and performs substantially better experimentally. Our analysis is the first of a Krylov subspace method that does not depend on singular value gaps, which are unreliable in practice.Furthermore, while it is a simple accuracy benchmark, even (1+epsilon) error for spectral norm low-rank approximation does not imply that an algorithm returns high quality principal components, a major issue for data applications. We address this problem for the first time by showing that both Block Krylov Iteration and Simultaneous Iteration give nearly optimal PCA for any matrix. This result further justifies their strength over non-iterative sketching methods.

Alkis Gotovos · Hamed Hassani · Andreas Krause

[ Room 210 A ]

Submodular and supermodular functions have found wide applicability in machine learning, capturing notions such as diversity and regularity, respectively. These notions have deep consequences for optimization, and the problem of (approximately) optimizing submodular functions has received much attention. However, beyond optimization, these notions allow specifying expressive probabilistic models that can be used to quantify predictive uncertainty via marginal inference. Prominent, well-studied special cases include Ising models and determinantal point processes, but the general class of log-submodular and log-supermodular models is much richer and little studied. In this paper, we investigate the use of Markov chain Monte Carlo sampling to perform approximate inference in general log-submodular and log-supermodular models. In particular, we consider a simple Gibbs sampling procedure, and establish two sufficient conditions, the first guaranteeing polynomial-time, and the second fast (O(nlogn)) mixing. We also evaluate the efficiency of the Gibbs sampler on three examples of such models, and compare against a recently proposed variational approach.

Yuxin Chen · Emmanuel Candes

[ Room 210 A ]

This paper is concerned with finding a solution x to a quadratic system of equations yi = |< ai, x >|^2, i = 1, 2, ..., m. We prove that it is possible to solve unstructured quadratic systems in n variables exactly from O(n) equations in linear time, that is, in time proportional to reading and evaluating the data. This is accomplished by a novel procedure, which starting from an initial guess given by a spectral initialization procedure, attempts to minimize a non-convex objective. The proposed algorithm distinguishes from prior approaches by regularizing the initialization and descent procedures in an adaptive fashion, which discard terms bearing too much influence on the initial estimate or search directions. These careful selection rules---which effectively serve as a variance reduction scheme---provide a tighter initial guess, more robust descent directions, and thus enhanced practical performance. Further, this procedure also achieves a near-optimal statistical accuracy in the presence of noise. Finally, we demonstrate empirically that the computational cost of our algorithm is about four times that of solving a least-squares problem of the same size.

Mehrdad Farajtabar · Yichen Wang · Manuel Rodriguez · Shuang Li · Hongyuan Zha · Le Song

[ Room 210 A ]

Information diffusion in online social networks is affected by the underlying network topology, but it also has the power to change it. Online users are constantly creating new links when exposed to new information sources, and in turn these links are alternating the way information spreads. However, these two highly intertwined stochastic processes, information diffusion and network evolution, have been predominantly studied separately, ignoring their co-evolutionary dynamics.We propose a temporal point process model, COEVOLVE, for such joint dynamics, allowing the intensity of one process to be modulated by that of the other. This model allows us to efficiently simulate interleaved diffusion and network events, and generate traces obeying common diffusion and network patterns observed in real-world networks. Furthermore, we also develop a convex optimization framework to learn the parameters of the model from historical diffusion and network evolution traces. We experimented with both synthetic data and data gathered from Twitter, and show that our model provides a good fit to the data as well as more accurate predictions than alternatives.

Maren Mahsereci · Philipp Hennig

[ Room 210 A ]

In deterministic optimization, line searches are a standard tool ensuring stability and efficiency. Where only stochastic gradients are available, no direct equivalent has so far been formulated, because uncertain gradients do not allow for a strict sequence of decisions collapsing the search space. We construct a probabilistic line search by combining the structure of existing deterministic methods with notions from Bayesian optimization. Our method retains a Gaussian process surrogate of the univariate optimization objective, and uses a probabilistic belief over the Wolfe conditions to monitor the descent. The algorithm has very low computational cost, and no user-controlled parameters. Experiments show that it effectively removes the need to define a learning rate for stochastic gradient descent.

Vasilis Syrgkanis · Alekh Agarwal · Haipeng Luo · Robert Schapire

[ Room 210 A ]

We show that natural classes of regularized learning algorithms with a form of recency bias achieve faster convergence rates to approximate efficiency and to coarse correlated equilibria in multiplayer normal form games. When each player in a game uses an algorithm from our class, their individual regret decays at $O(T^{-3/4})$, while the sum of utilities converges to an approximate optimum at $O(T^{-1})$--an improvement upon the worst case $O(T^{-1/2})$ rates. We show a black-box reduction for any algorithm in the class to achieve $\tilde{O}(T^{-1/2})$ rates against an adversary, while maintaining the faster rates against algorithms in the class. Our results extend those of Rakhlin and Shridharan~\cite{Rakhlin2013} and Daskalakis et al.~\cite{Daskalakis2014}, who only analyzed two-player zero-sum games for specific algorithms.
Alon Orlitsky · Ananda Theertha Suresh

[ Room 210 A ]

Estimating distributions over large alphabets is a fundamental machine-learning tenet. Yet no method is known to estimate all distributions well. For example, add-constant estimators are nearly min-max optimal but often perform poorly in practice, and practical estimators such as absolute discounting, Jelinek-Mercer, and Good-Turing are not known to be near optimal for essentially any distribution.We describe the first universally near-optimal probability estimators. For every discrete distribution, they are provably nearly the best in the following two competitive ways. First they estimate every distribution nearly as well as the best estimator designed with prior knowledge of the distribution up to a permutation. Second, they estimate every distribution nearly as well as the best estimator designed with prior knowledge of the exact distribution, but as all natural estimators, restricted to assign the same probability to all symbols appearing the same number of times.Specifically, for distributions over $k$ symbols and $n$ samples, we show that for both comparisons, a simple variant of Good-Turing estimator is always within KL divergence of $(3+o(1))/n^{1/3}$ from the best estimator, and that a more involved estimator is within $\tilde{\mathcal{O}}(\min(k/n,1/\sqrt n))$. Conversely, we show that any estimator must have a KL divergence $\ge\tilde\Omega(\min(k/n,1/ n^{2/3}))$ over the best estimator for …
Igor Mordatch · Kendall Lowrey · Galen Andrew · Zoran Popovic · Emanuel Todorov

[ Room 210 A ]

We present a method for training recurrent neural networks to act as near-optimal feedback controllers. It is able to generate stable and realistic behaviors for a range of dynamical systems and tasks -- swimming, flying, biped and quadruped walking with different body morphologies. It does not require motion capture or task-specific features or state machines. The controller is a neural network, having a large number of feed-forward units that learn elaborate state-action mappings, and a small number of recurrent units that implement memory states beyond the physical system state. The action generated by the network is defined as velocity. Thus the network is not learning a control policy, but rather the dynamics under an implicit policy. Essential features of the method include interleaving supervised learning with trajectory optimization, injecting noise during training, training for unexpected changes in the task specification, and using the trajectory optimizer to obtain optimal feedback gains in addition to optimal actions.

Vitaly Kuznetsov · Mehryar Mohri

[ Room 210 A ]

We present data-dependent learning bounds for the general scenario of non-stationary non-mixing stochastic processes. Our learning guarantees are expressed in terms of a data-dependent measure of sequential complexity and a discrepancy measure that can be estimated from data under some mild assumptions. We use our learning bounds to devise new algorithms for non-stationary time series forecasting for which we report some preliminary experimental results.

Scott E Reed · Yi Zhang · Yuting Zhang · Honglak Lee

[ Room 210 A ]

In addition to identifying the content within a single image, relating images and generating related images are critical tasks for image understanding. Recently, deep convolutional networks have yielded breakthroughs in producing image labels, annotations and captions, but have only just begun to be used for producing high-quality image outputs. In this paper we develop a novel deep network trained end-to-end to perform visual analogy making, which is the task of transforming a query image according to an example pair of related images. Solving this problem requires both accurately recognizing a visual relationship and generating a transformed query image accordingly. Inspired by recent advances in language modeling, we propose to solve visual analogies by learning to map images to a neural embedding in which analogical reasoning is simple, such as by vector subtraction and addition. In experiments, our model effectively models visual analogies on several datasets: 2D shapes, animated video game sprites, and 3D car models.

Sainbayar Sukhbaatar · arthur szlam · Jason Weston · Rob Fergus

[ Room 210 A ]

We introduce a neural network with a recurrent attention model over a possibly large external memory. The architecture is a form of Memory Network (Weston et al., 2015) but unlike the model in that work, it is trained end-to-end, and hence requires significantly less supervision during training, making it more generally applicable in realistic settings. It can also be seen as an extension of RNNsearch to the case where multiple computational steps (hops) are performed per output symbol. The flexibility of the model allows us to apply it to tasks as diverse as (synthetic) question answering and to language modeling. For the former our approach is competitive with Memory Networks, but with less supervision. For the latter, on the Penn TreeBank and Text8 datasets our approach demonstrates comparable performance to RNNs and LSTMs. In both cases we show that the key concept of multiple computational hops yields improved results.

Dane Corneil · Wulfram Gerstner

[ Room 210 A ]

Rodents navigating in a well-known environment can rapidly learn and revisit observed reward locations, often after a single trial. While the mechanism for rapid path planning is unknown, the CA3 region in the hippocampus plays an important role, and emerging evidence suggests that place cell activity during hippocampal "preplay" periods may trace out future goal-directed trajectories. Here, we show how a particular mapping of space allows for the immediate generation of trajectories between arbitrary start and goal locations in an environment, based only on the mapped representation of the goal. We show that this representation can be implemented in a neural attractor network model, resulting in bump--like activity profiles resembling those of the CA3 region of hippocampus. Neurons tend to locally excite neurons with similar place field centers, while inhibiting other neurons with distant place field centers, such that stable bumps of activity can form at arbitrary locations in the environment. The network is initialized to represent a point in the environment, then weakly stimulated with an input corresponding to an arbitrary goal location. We show that the resulting activity can be interpreted as a gradient ascent on the value function induced by a reward at the goal location. Indeed, …

Cameron Po-Hsuan Chen · Janice Chen · Yaara Yeshurun · Uri Hasson · James Haxby · Peter J Ramadge

[ Room 210 A ]

Multi-subject fMRI data is critical for evaluating the generality and validity of findings across subjects, and its effective utilization helps improve analysis sensitivity. We develop a shared response model for aggregating multi-subject fMRI data that accounts for different functional topographies among anatomically aligned datasets. Our model demonstrates improved sensitivity in identifying a shared response for a variety of datasets and anatomical brain regions of interest. Furthermore, by removing the identified shared response, it allows improved detection of group differences. The ability to identify what is shared and what is not shared opens the model to a wide range of multi-subject fMRI studies.

Pascal Vincent · Alexandre de Brébisson · Xavier Bouthillier

[ Room 210 A ]

An important class of problems involves training deep neural networks with sparse prediction targets of very high dimension D. These occur naturally in e.g. neural language models or the learning of word-embeddings, often posed as predicting the probability of next words among a vocabulary of size D (e.g. 200,000). Computing the equally large, but typically non-sparse D-dimensional output vector from a last hidden layer of reasonable dimension d (e.g. 500) incurs a prohibitive $O(Dd)$ computational cost for each example, as does updating the $D \times d$ output weight matrix and computing the gradient needed for backpropagation to previous layers. While efficient handling of large sparse network inputs is trivial, this case of large sparse targets is not, and has thus so far been sidestepped with approximate alternatives such as hierarchical softmax or sampling-based approximations during training. In this work we develop an original algorithmic approach that, for a family of loss functions that includes squared error and spherical softmax, can compute the exact loss, gradient update for the output weights, and gradient for backpropagation, all in $O(d^2)$ per example instead of $O(Dd)$, remarkably without ever computing the D-dimensional output. The proposed algorithm yields a speedup of $\frac{D}{4d}$, i.e. two orders …
Alessandro Rudi · Raffaello Camoriano · Lorenzo Rosasco

[ Room 210 A ]

We study Nyström type subsampling approaches to large scale kernel methods, and prove learning bounds in the statistical learning setting, where random sampling and high probability estimates are considered. In particular, we prove that these approaches can achieve optimal learning bounds, provided the subsampling level is suitably chosen. These results suggest a simple incremental variant of Nyström kernel ridge regression, where the subsampling level controls at the same time regularization and computations. Extensive experimental analysis shows that the considered approach achieves state of the art performances on benchmark large scale datasets.