Skip to yearly menu bar Skip to main content


Poster

Bidirectional Recurrent Convolutional Networks for Multi-Frame Super-Resolution

Yan Huang · Wei Wang · Liang Wang

210 C #6

Abstract:

Super resolving a low-resolution video is usually handled by either single-image super-resolution (SR) or multi-frame SR. Single-Image SR deals with each video frame independently, and ignores intrinsic temporal dependency of video frames which actually plays a very important role in video super-resolution. Multi-Frame SR generally extracts motion information, e.g. optical flow, to model the temporal dependency, which often shows high computational cost. Considering that recurrent neural network (RNN) can model long-term contextual information of temporal sequences well, we propose a bidirectional recurrent convolutional network for efficient multi-frame SR.Different from vanilla RNN, 1) the commonly-used recurrent full connections are replaced with weight-sharing convolutional connections and 2) conditional convolutional connections from previous input layers to current hidden layer are added for enhancing visual-temporal dependency modelling. With the powerful temporal dependency modelling, our model can super resolve videos with complex motions and achieve state-of-the-art performance. Due to the cheap convolution operations, our model has a low computational complexity and runs orders of magnitude faster than other multi-frame methods.

Live content is unavailable. Log in and register to view live content