Skip to yearly menu bar Skip to main content


Poster

3D Object Proposals for Accurate Object Class Detection

Xiaozhi Chen · Kaustav Kundu · Yukun Zhu · Andrew G Berneshawi · Huimin Ma · Sanja Fidler · Raquel Urtasun

210 C #12

Abstract:

The goal of this paper is to generate high-quality 3D object proposals in the context of autonomous driving. Our method exploits stereo imagery to place proposals in the form of 3D bounding boxes. We formulate the problem as minimizing an energy function encoding object size priors, ground plane as well as several depth informed features that reason about free space, point cloud densities and distance to the ground. Our experiments show significant performance gains over existing RGB and RGB-D object proposal methods on the challenging KITTI benchmark. Combined with convolutional neural net (CNN) scoring, our approach outperforms all existing results on all three KITTI object classes.

Live content is unavailable. Log in and register to view live content