Session
Oral Session 2
Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems
Yuxin Chen · Emmanuel Candes
This paper is concerned with finding a solution x to a quadratic system of equations yi = |< ai, x >|^2, i = 1, 2, ..., m. We prove that it is possible to solve unstructured quadratic systems in n variables exactly from O(n) equations in linear time, that is, in time proportional to reading and evaluating the data. This is accomplished by a novel procedure, which starting from an initial guess given by a spectral initialization procedure, attempts to minimize a non-convex objective. The proposed algorithm distinguishes from prior approaches by regularizing the initialization and descent procedures in an adaptive fashion, which discard terms bearing too much influence on the initial estimate or search directions. These careful selection rules---which effectively serve as a variance reduction scheme---provide a tighter initial guess, more robust descent directions, and thus enhanced practical performance. Further, this procedure also achieves a near-optimal statistical accuracy in the presence of noise. Finally, we demonstrate empirically that the computational cost of our algorithm is about four times that of solving a least-squares problem of the same size.
Submodular and supermodular functions have found wide applicability in machine learning, capturing notions such as diversity and regularity, respectively. These notions have deep consequences for optimization, and the problem of (approximately) optimizing submodular functions has received much attention. However, beyond optimization, these notions allow specifying expressive probabilistic models that can be used to quantify predictive uncertainty via marginal inference. Prominent, well-studied special cases include Ising models and determinantal point processes, but the general class of log-submodular and log-supermodular models is much richer and little studied. In this paper, we investigate the use of Markov chain Monte Carlo sampling to perform approximate inference in general log-submodular and log-supermodular models. In particular, we consider a simple Gibbs sampling procedure, and establish two sufficient conditions, the first guaranteeing polynomial-time, and the second fast (O(nlogn)) mixing. We also evaluate the efficiency of the Gibbs sampler on three examples of such models, and compare against a recently proposed variational approach.