Skip to yearly menu bar Skip to main content


Session

Spotlight Session 7

Abstract:
Chat is not available.

Despite the recent achievements in machine learning, we are still very far from achieving real artificial intelligence. In this paper, we discuss the limitations of standard deep learning approaches and show that some of these limitations can be overcome by learning how to grow the complexity of a model in a structured way. Specifically, we study the simplest sequence prediction problems that are beyond the scope of what is learnable with standard recurrent networks, algorithmically generated sequences which can only be learned by models which have the capacity to count and to memorize sequences. We show that some basic algorithms can be learned from sequential data using a recurrent network associated with a trainable memory.


Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

Seunghoon Hong · Hyeonwoo Noh · Bohyung Han

We propose a novel deep neural network architecture for semi-supervised semantic segmentation using heterogeneous annotations. Contrary to existing approaches posing semantic segmentation as region-based classification, our algorithm decouples classification and segmentation, and learns a separate network for each task. In this architecture, labels associated with an image are identified by classification network, and binary segmentation is subsequently performed for each identified label by segmentation network. The decoupled architecture enables us to learn classification and segmentation networks separately based on the training data with image-level and pixel-wise class labels, respectively. It facilitates to reduce search space for segmentation effectively by exploiting class-specific activation maps obtained from bridging layers. Our algorithm shows outstanding performance compared to other semi-supervised approaches even with much less training images with strong annotations in PASCAL VOC dataset.


Action-Conditional Video Prediction using Deep Networks in Atari Games

Junhyuk Oh · Xiaoxiao Guo · Honglak Lee · Richard L Lewis · Satinder Singh

Motivated by vision-based reinforcement learning (RL) problems, in particular Atari games from the recent benchmark Aracade Learning Environment (ALE), we consider spatio-temporal prediction problems where future (image-)frames are dependent on control variables or actions as well as previous frames. While not composed of natural scenes, frames in Atari games are high-dimensional in size, can involve tens of objects with one or more objects being controlled by the actions directly and many other objects being influenced indirectly, can involve entry and departure of objects, and can involve deep partial observability. We propose and evaluate two deep neural network architectures that consist of encoding, action-conditional transformation, and decoding layers based on convolutional neural networks and recurrent neural networks. Experimental results show that the proposed architectures are able to generate visually-realistic frames that are also useful for control over approximately 100-step action-conditional futures in some games. To the best of our knowledge, this paper is the first to make and evaluate long-term predictions on high-dimensional video conditioned by control inputs.


On-the-Job Learning with Bayesian Decision Theory

Keenon Werling · Arun Tejasvi Chaganty · Percy Liang · Christopher Manning

Our goal is to deploy a high-accuracy system starting with zero training examples. We consider an “on-the-job” setting, where as inputs arrive, we use real-time crowdsourcing to resolve uncertainty where needed and output our prediction when confident. As the model improves over time, the reliance on crowdsourcing queries decreases. We cast our setting as a stochastic game based on Bayesian decision theory, which allows us to balance latency, cost, and accuracy objectives in a principled way. Computing the optimal policy is intractable, so we develop an approximation based on Monte Carlo Tree Search. We tested our approach on three datasets-- named-entity recognition, sentiment classification, and image classification. On the NER task we obtained more than an order of magnitude reduction in cost compared to full human annotation, while boosting performance relative to the expert provided labels. We also achieve a 8% F1 improvement over having a single human label the whole set, and a 28% F1 improvement over online learning.


Learning Wake-Sleep Recurrent Attention Models

Jimmy Ba · Russ Salakhutdinov · Roger Grosse · Brendan J Frey

Despite their success, convolutional neural networks are computationally expensive because they must examine all image locations. Stochastic attention-based models have been shown to improve computational efficiency at test time, but they remain difficult to train because of intractable posterior inference and high variance in the stochastic gradient estimates. Borrowing techniques from the literature on training deep generative models, we present the Wake-Sleep Recurrent Attention Model, a method for training stochastic attention networks which improves posterior inference and which reduces the variability in the stochastic gradients. We show that our method can greatly speed up the training time for stochastic attention networks in the domains of image classification and caption generation.


Backpropagation for Energy-Efficient Neuromorphic Computing

Steve Esser · Rathinakumar Appuswamy · Paul Merolla · John Arthur · Dharmendra S Modha

Solving real world problems with embedded neural networks requires both training algorithms that achieve high performance and compatible hardware that runs in real time while remaining energy efficient. For the former, deep learning using backpropagation has recently achieved a string of successes across many domains and datasets. For the latter, neuromorphic chips that run spiking neural networks have recently achieved unprecedented energy efficiency. To bring these two advances together, we must first resolve the incompatibility between backpropagation, which uses continuous-output neurons and synaptic weights, and neuromorphic designs, which employ spiking neurons and discrete synapses. Our approach is to treat spikes and discrete synapses as continuous probabilities, which allows training the network using standard backpropagation. The trained network naturally maps to neuromorphic hardware by sampling the probabilities to create one or more networks, which are merged using ensemble averaging. To demonstrate, we trained a sparsely connected network that runs on the TrueNorth chip using the MNIST dataset. With a high performance network (ensemble of $64$), we achieve $99.42\%$ accuracy at $121 \mu$J per image, and with a high efficiency network (ensemble of $1$) we achieve $92.7\%$ accuracy at $0.408 \mu$J per image.

The process of dynamic state estimation (filtering) based on point process observations is in general intractable. Numerical sampling techniques are often practically useful, but lead to limited conceptual insight about optimal encoding/decoding strategies, which are of significant relevance to Computational Neuroscience. We develop an analytically tractable Bayesian approximation to optimal filtering based on point process observations, which allows us to introduce distributional assumptions about sensory cell properties, that greatly facilitates the analysis of optimal encoding in situations deviating from common assumptions of uniform coding. The analytic framework leads to insights which are difficult to obtain from numerical algorithms, and is consistent with experiments about the distribution of tuning curve centers. Interestingly, we find that the information gained from the absence of spikes may be crucial to performance.

Color constancy is the recovery of true surface color from observed color, and requires estimating the chromaticity of scene illumination to correct for the bias it induces. In this paper, we show that the per-pixel color statistics of natural scenes---without any spatial or semantic context---can by themselves be a powerful cue for color constancy. Specifically, we describe an illuminant estimation method that is built around a "classifier" for identifying the true chromaticity of a pixel given its luminance (absolute brightness across color channels). During inference, each pixel's observed color restricts its true chromaticity to those values that can be explained by one of a candidate set of illuminants, and applying the classifier over these values yields a distribution over the corresponding illuminants. A global estimate for the scene illuminant is computed through a simple aggregation of these distributions across all pixels. We begin by simply defining the luminance-to-chromaticity classifier by computing empirical histograms over discretized chromaticity and luminance values from a training set of natural images. These histograms reflect a preference for hues corresponding to smooth reflectance functions, and for achromatic colors in brighter pixels. Despite its simplicity, the resulting estimation algorithm outperforms current state-of-the-art color constancy methods. Next, we propose a method to learn the luminance-to-chromaticity classifier "end-to-end". Using stochastic gradient descent, we set chromaticity-luminance likelihoods to minimize errors in the final scene illuminant estimates on a training set. This leads to further improvements in accuracy, most significantly in the tail of the error distribution.