Spotlight
Semi-Supervised Multitask Learning
Qiuhua Liu · Xuejun Liao · Lawrence Carin
Abstract:
A semi-supervised multitask learning (MTL) framework is presented, in which M parameterized semi-supervised classifiers, each associated with one of M partially labeled data manifolds, are learned jointly under the constraint of a soft-sharing prior imposed over the parameters of the classifiers. The unlabeled data are utilized by basing classifier learning on neighborhoods, induced by a Markov random walk over a graph representation of each manifold. Experimental results on real data sets demonstrate that semi-supervised MTL yields significant improvements in generalization performance over either semi-supervised single-task learning (STL) or supervised MTL.
Chat is not available.
Successful Page Load