Spotlight
Object Recognition by Scene Alignment
Bryan C Russell · Antonio Torralba · Ce Liu · Rob Fergus · William Freeman
Current object recognition systems can only recognize a limited number of object categories; scaling up to many categories is the next challenge in object recognition. We seek to build a system to recognize and localize many different object categories in complex scenes. We achieve this through a deceptively simple approach: by matching the input image, in an appropriate representation, to images in a large training set of labeled images (LabelMe). This provides us with a set of retrieval images, providing hypotheses for object identities and locations. We then transfer the labelings from the retrieval set. We demonstrate the effectiveness of this approach and study algorithm component contributions using held-out test sets from the LabelMe database.