Approximating Hierarchical MV-sets for Hierarchical Clustering
Assaf Glazer · Omer Weissbrod · Michael Lindenbaum · Shaul Markovitch
2014 Poster
Abstract
The goal of hierarchical clustering is to construct a cluster tree, which can be viewed as the modal structure of a density. For this purpose, we use a convex optimization program that can efficiently estimate a family of hierarchical dense sets in high-dimensional distributions. We further extend existing graph-based methods to approximate the cluster tree of a distribution. By avoiding direct density estimation, our method is able to handle high-dimensional data more efficiently than existing density-based approaches. We present empirical results that demonstrate the superiority of our method over existing ones.
Chat is not available.
Successful Page Load